中国激光, 2022, 49 (4): 0407001, 网络出版: 2022-01-18   

纳秒脉冲激光诱导的水中双空泡振荡研究 下载: 973次

Dynamics of Bubble Pairs in Water Induced by Focused Nanosecond Laser Pulse
作者单位
1 西安交通大学生命科学与技术学院生物医学信息工程教育部重点实验室,陕西 西安 710049
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
摘要
对水中不同间隔下的双空泡振荡行为的研究可为光致空化在生物医学领域的应用如微流体中的快速融合、细胞膜微手术等提供指导。通过将单脉冲激光分束,将激光从不同方向聚焦到水中,诱导大小、位置可控的两点击穿,形成具有相似尺寸的两个空化气泡,并引入高速摄像机,以及散射光检测和声学检测方法对双空泡振荡行为进行多方位测量。研究表明,对于能发生融合的双空泡,相对间隔的改变并不影响融合空泡的第一振荡周期,但能显著影响融合空泡振荡的非对称性、坍塌冲击波的形成及重建空泡的振荡。
Abstract
Objective

Focused laser-induced cavitation in liquid is crucial in numerous applications, e.g., targeted cell lysis, microfluidic operations (such as switching, pumping, and mixing), and perforation of cell membranes. Depending on the focusing conditions and laser pulse energy, single or multiple bubble formations may occur, which may be accompanied by bubble coalescence, high-speed jet formation, ring vortex generation, and multiple shock wave emission. Owing to its promising application prospect on microsurgery, micropumping, and tissue cutting, laser-induced multiple bubbles and their interactions have been studied extensively. It has been confirmed that the dynamics of multiple bubbles are strongly related to the relative bubble positions as well as the time and size difference between bubbles. For example, by adjusting these parameters, the strength and direction of the emerging liquid jets can be controlled. Shock wave and rebound bubbles generated after cavitation bubble collapse are susceptible to their asymmetrical collapse. Without a doubt, the mutual interaction of bubbles causes the asymmetrical oscillation process of bubbles. However, to the best of our knowledge, the influence of multiple bubble interactions on shock wave emission and rebound bubble process has not been studied yet. Therefore, in this study, two bubbles with similar sizes were generated using a single nanosecond laser pulse to investigate the influence of relative interval on multiple bubble dynamics, especially on collapse shock wave emission and rebound bubble generation.

Methods

A frequency-doubled Q-switched Nd∶YAG laser was introduced to generate optical breakdown in water. The laser pulse was split into two parts using a variable beam splitter. Then, the split laser pulses were focused on water from different directions to generate bubble pairs. Three methods were introduced to measure the bubble pair dynamics: high-speed shadowgraph, optical scattering technique, and acoustic detection technique. It was easy to generate bubble pairs with variable relative interval by adjusting the incidence direction of laser pulses, focusing objective position, and pulse energy. First, the bubble pair dynamics with different relative intervals were discussed experimentally and compared with the Rayleigh-Plesset model. Second, the influences of the relative interval between bubble pairs on the collapse shock wave strength and rebound bubble oscillation period were investigated. In this part, a high-speed camera was replaced by an EMCCD to picture the plasmas generated during an optical breakdown, and the bubble size was calculated by its first oscillation period.

Results and Discussions

For a single bubble in free liquid, the maximum radius of the bubble linearly increases with the cube root of the pulse energy and its first oscillation period, respectively, (Fig. 3), which means that the bubble size can be calculated from the pulse energy or its first oscillation period. The oscillation process of bubble pairs is significantly influenced by its relative interval (γ) (Fig. 4). For γ=1.36, the bubble pairs oscillates spherically, without contacting each other before their first collapse, but both of their first oscillation periods significantly increases [Figs. 4(a) and (b)]. For γ≈0.49, the two bubbles begin to coalesce during the early stage of expansion, and their shapes deform. The evolution of the equivalent radius of the coalesced bubble fits well with the Rayleigh-Plesset simulation [Figs. 4(c) and (d)]. For γ≈0.18, the coalesced bubble oscillates spherically again during its first period [Figs. 4(e) and (f)], which is similar to the single bubble case. Then, we experimentally examine the influence of relative interval of bubble pairs on the collapse shock wave emission and rebound bubble generation. The results revealed that the first oscillation period was uninfluenced by the relative interval (γ<0.75) (Table 1). However, with the increase in relative interval, the collapse shock wave strength first reduced, then increased, and then reduced again; however, an opposite trend was observed in the rebound bubble oscillation period (Fig. 6), which meant that the relative interval affected the energy distribution between shock wave and rebound bubble. Owing to the multiple shock wave formation induced by the asymmetric collapse of the coalesced bubble, the evolution of shock wave strength and rebound bubble oscillation over relative interval were not synchronous.

Conclusions

In this study, we investigate the dynamics of laser-induced bubble pairs with variable relative interval. The bubble pair oscillation process significantly varies with relative interval. For a noncoalesced bubble pair, the oscillation is nearly spherically during the first period, but both of their oscillation processes are prolonged. For a coalesced bubble pair, the smaller the relative interval, the more spherical the bubble shape during its first period. The first oscillation period is longer than that of every single bubble and unaffected by the relative interval when it is less than 0.75. Besides, the evolution of coalesced bubble could still be described by Rayleigh-Plesset model. However, the relative interval of bubble pairs significantly influences the collapse shock wave emission and rebound bubble generation after the collapse of the coalesced bubble. The findings of this study are expected to facilitate the applications of laser-induced bubbles in microfluidic operations, such as rapid mixing and cell sorting.

1 引言

当液体介质的局部区域中由能量沉积引起的温度或者压强改变超过一定阈值时,会产生空化现象(cavitation)。空化气泡(以下简称“空泡”)是其中最显著的一个物理过程,其振荡会引起周围液体的流动、压强的改变,以及坍塌时伴随着冲击波的激发等。空泡的振荡过程很容易受到周围环境因素的影响,温度[1]和压强[2]的改变,外源性声场[3-5]、壁[6-7]的存在,以及多空泡相互作用[8-9]等都会引起空泡的非对称振荡并伴随着新的物理现象的产生。特别是多空泡同时形成时,其振荡过程会相互影响并导致空泡形状和振荡周期发生改变,并出现高速射流和涡环现象,以及空泡发生相互融合、靠近、偏离甚至分裂。这虽然增加了空泡演变过程的复杂性,但同时也拓展了光致空化的应用范围,例如,高速射流具有更小的尺寸且具有更强的穿刺性,在细胞膜微手术、显微切割等方面有良好的应用前景;空泡的非对称振荡所引起的周围液体介质的流动不再是径向流,可用于提高微流控芯片中的快速融合效率等。因此,多空泡之间的相互作用及其振荡过程受到广泛关注。

诱导空泡的形成通常是利用脉冲激光[810-15]、电火花[916]、压力脉冲[17-18]、水下爆炸[19]等来实现,其中利用脉冲激光诱导空泡形成具有非接触、精准度高及可控性强等优点,已在纳米材料制备[20]、细胞穿孔[21]等方面得到广泛应用。人们从20世纪70年代就开始关注双空泡的相互作用及其振荡过程。Mitchell等[22]利用高速相机拍摄了两个电火花空泡的相互作用及其动态过程。Lauterborn等[23-24]利用脉冲激光诱导反相的两个空泡来研究射流和涡环等现象和形成机制。在此基础上,Tomita等[12]利用脉冲激光研究空泡相对大小和相对位置的改变对空泡振荡行为的影响。Chew等[25]利用电火花的方式来产生两个不同大小的空泡,研究空泡大小、相位对射流的影响。Fong等[16]则对两个相似尺寸空泡在不同相对位置情况下的振荡过程包括不同方向射流、空泡弹弓效应、空泡融合过程展开研究。南京理工大学的韩冰[26]对双空泡相互作用以及非对称溃灭的力学特性进行了系统研究。当空泡附近存在壁或者空气面时,双空泡的振荡行为更加复杂[27-30]。此外,人们也对更多空泡相互作用下的振荡行为进行了研究,例如当具有相同能量的多个同时形成的空泡排成一列时,靠外的空泡会先坍塌,且在坍塌时形成指向中间空泡的射流[31]。Bremond等[17]利用超声的负向压在水中产生多个空泡,发现在边缘位置的空泡尽管尺寸最大,但是整个空泡群呈现由外向内逐渐坍塌的方式。Lim等[13]利用空间光调制技术来形成多点击穿,利用多空泡的相互融合来形成具有不同形状的融合空泡。Fu等[11]利用单脉冲激光来诱导间隔很小的多点击穿,并探究多点击穿对融合空泡重建过程以及坍塌冲击波的影响。随着计算机技术的发展,更多的数值计算方法被用于仿真多空泡振荡所引起的空泡内部变化、周围液体流场分布,以及压强变化[83032-34]。Li等[35-36]研究了双空泡的融合过程,并对融合过程进行了理论推导和拟合。

上述研究表明,多空泡相互作用下的振荡过程与空泡数量、相对位置、空泡大小以及空泡间的相位差都有密切关系,例如,对于两个大小相同且同时形成的空泡,在距离比较远时,会在坍塌时形成指向对方的射流[2232]。随着相对位置的靠近,即使在未接触的情况下,两个空泡会在膨胀过程中相互挤压;进一步减小空泡间隔时会出现融合现象[935]。而对于两个尺寸不相同的空泡,在距离较远时,小的空泡坍塌时会形成一束指向大空泡的高速射流[30]。随着间隔的减小,小空泡坍塌形成的射流可以刺穿大空泡并明显改变大空泡的振荡过程,如坍塌时形成反向射流[28]。当两个空泡的尺寸差异进一步增大时,小的空泡在坍塌时会被撕裂,形成两束指向相反的射流[21]。两个相同尺寸的空泡的形成时刻不同所造成的相位差异也会诱导射流的形成,当相差π/2个相位时,所形成的空泡在膨胀过程会形成指向另一个空泡的射流,而自身坍塌时也会形成反向射流,且射流特性与相位差密切相关。因此,通过控制空泡的相对大小、位置和相位,可以形成强弱、方向及尺寸可控的射流[8]。这种利用空泡相互作用形成的射流已经被成功地用于改变细胞膜的通透性,实现外源性物质的导入[37]。目前,多空泡相互作用下振荡行为的主要影响因素以及射流的控制方面已经受到广泛关注,但鲜有关于多空泡相互作用下融合空泡的演变过程以及其坍塌时冲击波的激发等方面的研究,而这些对于多空泡振荡在生物医学领域的应用是至关重要的。

本文搭建了光致击穿实验平台,利用单激光脉冲分束聚焦在水中形成具有相似尺寸的双空泡,并针对不同间隔下的空泡融合过程进行研究。结果表明,发生融合的双空泡振荡过程依旧可用Rayleigh-Plesset模型[38-39]来描述,空泡间相对距离的变化不会对融合空泡的振荡周期产生明显影响,但会影响重建空泡的振荡周期和坍塌冲击波的强度。

2 实验装置和检测方法

图1所示为用于双空泡振荡行为研究的光致击穿实验平台。一台输出波长为1064 nm,脉宽 为6 ns, 重复频率为10 Hz的Nd∶YAG脉冲激光器(Quantel,Q-smart 450)经过二倍频后作为诱导光致空泡的泵浦源。脉冲激光器发出的激光首先经过一个分光镜进行分束,反射部分进入能量计并记录脉冲能量,透射部分再进入一个可调分束器(Thorlabs,VA5-532/M)进行分束,分束后的两束激光分别经过长工作距离物镜(大恒光电,GCO-2131)聚焦到一个内径为10 mm的四面透光石英比色皿内,通过调整两束光的位置和分光比,形成大小、位置不同的两点击穿。

图 1. 实验系统结构示意图

Fig. 1. Schematic of experimental setup

下载图片 查看所有图片

击穿空泡的检测分为三个模块:散射光检测模块、成像模块和声学检测模块。散射光检测模块是通过检测空泡振荡所引起的探测光强度变化来间接检测空泡振荡过程,能得到精确的空泡脉冲振荡周期。散射光检测模块使用一个波长为632 nm、功率为2 mW的He-Ne激光器(Thorlabs,HNL020LB)作为散射光探测光源。输出的激光经过一个二向色镜(Thorlabs,DMLP567R)与脉冲光合束后,聚焦到样品池内。利用一个高速的光电探测器(FEMTO, 带宽为25 kHz~200 MHz)来检测探测光的强度变化。为避免脉冲激光的影响,在探测器前端增加一个限波片(Thorlabs,NF533-17)和一个滤波片(Thorlabs,FB630-10)。成像模块由样品池侧面的一个超高速摄像机(Photron, Fastcam SA-Z)以及在相机前端的4倍成像物镜组成,用于直接对空化气泡成像。将输出波长为660 nm的半导体激光器(Coherent,OBIS660)作为成像光源。在样品池上方放置一个声学探头(Olympus, V324-N-SU)组成声学监测模块,用于探测光致击穿过程产生的冲击波信号。此外,采用多通道的示波器(Rohde & Schwarz, PTE1204)记录声学探头和光电探测器的信号。通过一台脉冲延时/发生器(Stanford Research Systems Inc., DG645)来实现脉冲激光器、高速成像仪及示波器之间的时序控制。

通过声学信号探测可精确地获得空泡第一振荡周期,但重建空泡的尺寸小且振荡呈非对称性,导致空泡坍塌时形成的冲击波很弱,这限制了通过声学信号测量重建空泡及后续空泡脉动振荡周期的能力。此外,壁对冲击波的反射也会进一步增加利用声学方法监测空泡重建过程的难度。散射光检测方法具有更高的灵敏度,可检测百纳米量级的空泡振荡过程,能避免声学检测方法所受的干扰,且能对空泡附近液体温度的变化进行检测。因此,散射光检测方法和声学检测方法的结合,能相互补充和配合,更全面地检测光致空化过程。

3 空泡振荡理论模型

早在20世纪初,人们就对水中的空泡振荡过程进行研究,当时为了解决船只推进器被空泡腐蚀的问题,Rayleigh通过Navier-Stokes方程首先提出了用于描述空泡演变过程的动力学模型,即Rayleigh模型[38]。该模型将空泡振荡置于无限、均匀及不可压缩的流体环境中,且不考虑表面张力以及黏滞力对振荡过程的影响。Plesset在考虑表面张力和液体黏性的基础上,对该模型进行了修正,得到了Rayleigh-Plesset模型[39-40],即R-P模型。其具体描述为 ρRR¨32ρR˙2pgn(RnR)3κpvp2σR4μRR˙pgn2σRnppv式中:R表示空泡的半径;R˙R¨分别表示空泡半径对时间的一阶和二阶微分;Rn为空泡平衡半径,在仿真中通常为拟合参量,与空泡演变的最大尺寸呈正相关;液体密度ρ =998 kg/m3;饱和蒸气压pv=2330 Pa;静水压p=0.1 MPa;液体表面张力系数σ=0.073 N/m;黏滞系数μ=10-3 Pa·s;pgn为空泡内的整体压强;κ为绝热系数,等温过程取κ=1,绝热过程取κ=1.33。空泡振荡过程中,绝热系数的取值应该是变化的。在空泡膨胀初期和坍塌末期,由于空泡的尺寸小、热交换速率低,且壁的运动速度快,可视为绝热过程;而在空泡达到最大尺寸附近,空泡表面积大,热交换速率快,且壁的运动速度非常慢,这个阶段可视为等温过程。本实验所产生的空泡尺寸在几十到几百微米量级,空泡振荡过程非常迅速,由热交换引起的能量损失远小于冲击波发射所耗散的能量。因此,在仿真过程中不考虑热耗散所引起的能量损失,将κ取为1.33。

值得注意的是,空泡振荡过程中表面张力2σR和黏滞力4μRR˙都与空泡半径呈反比,这意味着空泡尺寸越大,表面张力与黏滞力对空泡振荡的影响越小。特别是几十微米的空泡在自由场中振荡时,其表面张力和黏滞力对空泡振荡的影响通常可以忽略。在这种情况下,空泡的第一振荡周期Tosc1与最大半径Rmax之间呈线性相关,且他们之间的线性关系可以简化为[41]RmaxTosc11.83ppvρ因此,对于微米量级以上尺寸的球形空泡,其最大半径可通过散射光检测到的振荡周期来计算得到。

4 结果分析与讨论

4.1 单空泡的振荡

首先,利用脉冲激光在水中诱导形成单点击穿。将两束激光固定在同一光轴上,调整可调分束器上半波片的偏振方向,使得分束的两束激光能量相近,以使产生的空泡具有相似的尺寸。调整完成后,分束器保持不动,阻挡其中一路激光,只保留光强较强的一路光,以形成单点击穿。受到聚焦条件和光束质量的影响,聚焦脉冲激光诱导光致击穿所形成的等离子体并不是严格的球形,而是呈现细长的椭球形或者倒三角锥形,这在之前的研究[1142-44]中被多次提及,但源自高温等离子体的空泡在膨胀过程中会迅速变成球形空泡。图2所示为利用光致击穿实验平台测量得到的单点击穿信号。图2(a)所示为利用高速摄像机拍摄的空泡振荡演变过程。根据高速摄像机拍摄的图像可以计算出空泡的半径随时间的变化,如图2(b)所示,虚线为利用R-P模型得到的仿真数据,其与实验数据基本吻合。图2(c)所示为空泡振荡所引起的散射光变化,图2(d)所示为利用超声探头得到的远场声学信号。根据散射光和声学信号,可以得到空泡脉动的精确周期和空泡振荡过程中所激发的冲击波强度信息。图2中所用的脉冲能量EL=468 μJ,通过测量和计算可得到空泡的最大半径Rmax=321.2 μm和第一振荡周期Tosc1=61.2 μs。在第一个振荡周期内,空泡的振荡保持球形,但重建空泡的振荡不再保持球状。值得注意的是,光致击穿和随后的空泡坍塌所形成的冲击波是一个正向的单极性波[45]。测量信号中的负压部分不是真实的冲击波信号,而是探头的伪迹。

图 2. 单空泡的检测结果(EL=468 μJ, Rmax=321.2 μm, Tosc1=61.2 μs)。(a)高速摄像机所拍摄的空泡动态演变图,帧间隔为3.33 μs;(b)空泡半径随时间的演变及与R-P模型的比较;(c)散射光信号图;(d)远场声学信号图

Fig. 2. Multimodality measurement of laser-induced single bubble in free liquid under EL=468 μJ, Rmax=321.2 μm, and Tosc1 =61.2 μs. (a) Photographs of bubble dynamics with an inter-frame interval of 3.33 μs obtained by high-speed camera; (b) time evolution of bubble radius and comparation with R-P simulations; (c) light scattering signal of cavitation bubble collected by photodetector; (d) far-field acoustic signal measured by a piezoelectric transducer

下载图片 查看所有图片

对于脉冲激光诱导的水中光致击穿,空泡的能量与脉冲激光能量之间通常呈线性相关[43],这意味着空泡的最大半径与脉冲能量的三分之一次方线性相关。此外,对于微米级以上尺寸的空泡,其受到表面张力和黏滞力的影响较小,空泡最大半径与第一振荡周期也呈线性相关。本实验结果也进一步证实了这一点,如图3所示。图3(a)所示为空泡最大半径与脉冲激光能量之间的关系,虚线为线性拟合直线,线性关系式为Rmax=47.21EL1/3-41.81,R2=0.9883。在双空泡的研究中由于空泡融合,在很难直接测量空泡半径的情况下,可根据此关系式来估算空泡的最大半径。从图3(b)可以看到,空泡最大半径与第一振荡周期呈线性关系,这与(3)式的计算结果吻合,Rmax=5.29Tosc。在自由场中,当单空泡振荡周期已知时,可通过空泡振荡周期来估算空泡的最大半径。

图 3. 自由场中空泡最大半径与脉冲能量、第一振荡周期之间的关系。(a)最大半径与脉冲能量的三分之一次方的关系;(b)最大半径与第一振荡周期的关系

Fig. 3. Bubble maximum radius related to pulse energy and the first oscillation period in free field. (a) Maximum radius as a function of the cube root of pulse energy; (b) maximum radius as a function of the first oscillation period

下载图片 查看所有图片

4.2 不同间隔下的双空泡振荡行为

本节引入一个无量纲的参数——相对间隔γ来描述空泡间的相对间隔,其定义为两个击穿点的间隔与两个空泡最大半径之和的比值,即 γdRmax1Rmax2式中:d为两个击穿点之间的绝对间隔;Rmax1Rmax2表示两个空泡的最大半径。在分束后的两束激光同轴的条件下,调整聚焦物镜的前后位置可实现在光轴方向调整空泡的相对位置。图4所示为相似激光能量下,具有不同间隔的空泡振荡过程的差异。

图4(a)、(b)所示为空泡相对间隔较远时,双空泡的振荡行为。所用的脉冲能量EL=344 μJ,两个击穿点间的绝对间隔d=667.5 μm,帧间隔tf=4.76 μs;左边击穿点所形成的空泡最大半径Rmax-L=289.0 μm, 其第一振荡周期Tosc1-L=61.4 μs;右边击穿点所产生的空泡最大半径 Rmax-R=228.7 μm,其第一振荡周期Tosc1-R=52.4 μs。计算得到的相对间隔γ =1.36。在这种情况下,两个空泡在振荡过程中并未接触,在坍塌和重建过程中会相互靠近,且存在一个相向的微弱射流,这与之前的研究结果一致[823]。在第一个振荡周期内,空泡间的相互作用并未明显改变空泡形状,即两个空泡保持球状。根据R-P模型中最大半径与第一振荡周期之间的线性关系,可计算出两个空泡的理论振荡周期分别为54.6 μs和43.2 μs, 而实际的第一振荡周期为61.4 μs和52.4 μs,这意味着空泡间的相互作用导致空泡振荡过程被拉伸,因此不再适用于R-P模型。图4(b)则比较了双空泡的半径随时间的变化趋势及其与R-P模型计算数据的比较,可以看出,两个空泡的膨胀过程依旧符合R-P模型,但坍塌过程受到明显拉伸,即两个空泡振荡周期的增加主要是由坍塌过程中空泡被拉伸造成的。

随着相对间隔的减小,空泡间的相互作用增强,并开始出现空泡融合现象。图4(c)、(d)所示为空泡发生融合时的振荡行为。此时所用的脉冲能量EL=454 μJ,两个击穿点间的绝对间隔为286.5 μm。由于间隔很小,两个空泡在膨胀初期就开始融合,并很快融合成一个空泡。由于空泡融合迅速,不能直接得到两个空泡单独振荡时的最大半径,但可通过图3(a)的RmaxEL1/3之间的线性关系,估算出较大空泡的最大半径约为290.4 μm,因此可知道γ≈0.49。从图4(c)可以看到,融合后空泡的形状出现明显畸变,不再是规则的球状。在坍塌阶段,沿光轴方向的坍塌速度显著高于垂直于光轴方向。但是将两个空泡作为一个整体时,发现空泡的振荡过程依旧满足R-P模型。在认为空泡形状沿光轴呈对称分布的情况下计算出空泡的等效半径,图4(d)则描述了其随时间的变化,虚线为利用R-P模型计算的结果。可以看到,尽管膨胀末期和坍塌初期空泡等效半径的变化与R-P模型的计算结果有一定的偏差,但整体的振荡过程依旧保持一致,即融合空泡的振荡过程依然可利用R-P模型来描述。空泡的融合过程也会导致空泡振荡周期延长,图2所示为EL=468 μJ条件下,左边光束聚焦形成的单空泡,其振荡周期为61.2 μs;而图4(c)所示为EL=454 μJ条件下形成的两个空泡,其尺寸和振荡周期都会更小,但融合空泡的振荡周期达到了67.7 μs。

图 4. 不同间隔下的双空泡振荡行为

Fig. 4. Dynamics of bubble pairs with varied relative intervals

下载图片 查看所有图片

当相对间隔进一步减小时,空泡的融合时间点进一步提前,整个融合空泡的振荡过程的不对称性减弱,与单空泡的振荡过程不再有明显的差异。图4(e)为脉冲激光能量EL=305.8 μJ,击穿点间隔为98.0 μm时所形成的空泡振荡图。根据空泡最大半径与能量之间的关系得到的较大空泡最大半径为275.9 μm,则γ≈0.18。由于融合时间点更早,高速摄像机并未拍摄到空泡融合前的图像,但通过等离子体图像可以明显看到两点击穿现象。此时,融合空泡在第一次坍塌前,空泡的形状保持球状,且空泡的半径随时间的演变与单空泡振荡的R-P模型计算结果吻合,即整个振荡过程可看作是单空泡的振荡。融合空泡的最大半径Rmax=337.4 μm,第一振荡周期Tosc1=65.48 μs。与图2形成的单空泡相比,在激光能量只有图2的64%(EL=98.0 μJ)的情况下,形成的融合空泡最大半径和振荡周期都比图2所示的单空泡大,这一方面是因为空泡的融合导致最大半径和振荡周期增加,另一方面则是因为分束后的两束激光的聚焦光路共轴,当击穿点相隔比较近时,两束激光会相互加强两个焦点处的光强,这进一步增加了击穿空泡的能量。

4.3 相对间隔对坍塌冲击波和重建空泡的影响

空泡的每次坍塌通常都伴随着坍塌冲击波的形成,且空泡的绝大部分能量是通过坍塌冲击波的形式耗散出去,剩下的一部分能量被重建空泡继承进行后续的脉动过程。在自由场中,空泡坍塌形成的冲击波强度会比光致击穿形成的冲击波强度略高,且都与空泡最大半径呈线性关系[45-46]。但是,受到壁、外源性声场及多点击穿等的影响,空泡振荡呈现非对称性,并在坍塌时会形成多个冲击波,从而降低冲击波的峰值强度[71147-48]。而空泡间的相互作用会显著增强空泡的非对称振荡特性,因此坍塌冲击波的强度会受到影响。本节主要分析空泡相对间隔对坍塌冲击波强度和重建空泡的影响。

在接下来的实验中,对原来的系统进行了部分改变,即利用一台EMCCD来替代高速成像仪,用于对两点击穿的等离子体进行成像。由于等离子体自身的发光强度较大,因此不需要额外的成像光源。同时,为了避免同轴时两个聚焦点距离减小所导致的光场相互作用加强对击穿空泡的影响,调整其中一束光的位置,使其聚焦点在另一个焦点的下方。进一步调整可调分束器,实现两束光能量均分。随后在具有不同的击穿间隔情况下,记录两点击穿时的空泡振荡周期,重建空泡振荡周期以及坍塌冲击波远场强度的变化,并根据图3所示的空泡RmaxTosc1之间的线性关系,得到空泡的最大半径和相对间隔。

图5所示为利用EMCCD测量得到的不同间隔条件下的等离子体图像。可以看到,形成的等离子体并非球形,而是呈现细长的椭球形或者圆锥形。因此,可根据等离子体图像来计算击穿点之间的间隔。

图 5. 不同击穿间隔下的两点击穿等离子体图像

Fig. 5. Plasma image of two-point breakdown with variable intervals

下载图片 查看所有图片

4.3.5 相对间隔对融合空泡第一振荡周期的影响

由4.2节可知,空泡的相互作用会导致空泡振荡周期延长。随着相对间隔的增大,在相同能量下形成的空泡融合时间点会滞后。这种由相对间隔改变引起的滞后是否会导致融合空泡的振荡周期发生改变?目前还不清楚。因此,本小节研究了击穿间隔的增加对融合空泡振荡周期的影响。在保持脉冲能量不变的情况下,在不同间隔处,首先挡住右边脉冲,测量左边脉冲单独产生光致击穿时的空泡振荡周期;然后挡住左边脉冲,测量右边脉冲单独产生光致击穿时的空泡振荡周期;最后测量两个脉冲同时产生光致击穿时融合空泡的第一振荡周期。考虑到纳秒脉冲激光的不稳定性,在每个间隔点测量200个脉冲,只记录脉冲能量在95%到105%能量节点间的数据作为有效数据。表1记录了脉冲激光能量在450 μJ附近时,不同击穿间隔条件下单脉冲和双脉冲产生光致击穿的空泡Tosc1的变化。可以明显看出,当脉冲能量在450 μJ附近时,单脉冲产生的空泡第一振荡周期为60 μs左右,由此估算出空泡的最大半径为317 μm。根据估算的空泡半径,可以计算出不同击穿间隔时的空泡相对间隔。本实验中只对相对间隔γ<0.75进行实验,此时两个空泡都会发生融合现象,且融合空泡的Tosc1会比单个空泡大。但从表1可以看出,随着相对间隔的变化,融合空泡的Tosc1并未发生明显改变。这意味着对于会发生融合现象的双空泡而言,尽管融合空泡的振荡形状会随着相对间隔的不同而有明显差异(图4),但融合空泡的Tosc1并不受相对间隔的影响。

表 1. 脉冲能量为450 μJ时,空泡相对间隔对融合空泡振荡周期的影响

Table 1. Influenced of relative interval on the first oscillation period of coalesced bubble with pulse energy of 450 μJ

d /μm39.471.6109.3165.0204.3287.7333.6380.2466.5
γ0.060.110.170.260.340.460.540.610.75
Tosc1 /μsLeft pulse60.6±6.3  59.7±8.2 61.5±5.8 61.4±6.5 
Right pulse58.8±7.8  57.9±8.1 56.8±8.0 57.5±6.1 
Double pulse71.5±6.971.7±6.270.1±7.871.1±7.271.5±6.771.3±6.871.4±5.472.8±4.670.3±5.8

查看所有表

4.3.6 相对间隔对坍塌冲击波和重建空泡振荡的影响

接下来分析相对间隔对坍塌冲击波和重建空泡振荡周期Tosc2的影响,并统计了这两者随击穿间隔的变化,结果如图6所示,其中纵坐标表示坍塌冲击波的相对峰值强度,即产生的冲击波实际强度与具有相同能量的单个空泡坍塌形成的远场冲击波峰值强度之比。可以看到,空泡间的相对间隔对坍塌冲击波的峰值强度影响较大。随着相对间隔的增加,坍塌冲击波的强度会急剧下降,在相对间隔达到0.2左右出现一个极小值,此时的强度下降接近甚至超过50%;随着相对间隔继续增加,坍塌冲击波的强度开始回升,在相对间隔为0.5左右达到一个极大值;随着相对间隔的进一步增大,坍塌冲击波的强度又开始下降。坍塌冲击波强度的总变化趋势为先减小再增大后减小。与坍塌冲击波强度的变化趋势相反,重建空泡的振荡周期随着相对间隔的增加呈现先增大、后减小、再增加的趋势,如图6(b)所示。

图 6. 相对间隔对坍塌冲击波峰值强度和重建空泡振荡周期的影响。(a)坍塌冲击波峰值强度随相对间隔的变化;(b)重建空泡振荡周期随相对间隔的变化

Fig. 6. Influence of relative interval on relative magnitude of collapse shock wave and rebound bubble period of coalesced bubble. (a) Relative magnitude of collapse shock wave as a function of relative interval; (b) rebound bubble oscillation period as a function of relative interval

下载图片 查看所有图片

由于双空泡的相互作用会引起空泡的非对称振荡,特别是对于发生融合现象的空泡,其非对称振荡的现象更加明显。这种空泡的非对称振荡会形成多个坍塌冲击波,进而降低其峰值强度。之前的研究[11]表明多点击穿的产生会导致更多的空泡能量转移到重建空泡中,从而进一步降低坍塌冲击波的强度。本实验则进一步证实了空泡间相互作用对坍塌冲击波和重建空泡的影响,且这种影响与相对间隔密切相关。在空泡坍塌时大部分能量以冲击波的形式耗散,另一部分能量则被转移到重建空泡中。空泡相对间隔的改变会影响空泡相互作用的程度,进而改变空泡能量在坍塌时的转移比例。当转移到坍塌冲击波的空泡能量减小时,意味着转移到重建空泡中的能量增加,这也解释了为何重建空泡的振荡周期变化趋势与坍塌冲击波强度的变化趋势相反。从图4了解到,间隔不同,双空泡振荡的形状具有明显差异。随着相对间隔的增大,尽管融合空泡的第一振荡周期并未受到影响,但融合空泡的形状逐渐从对称的球状发生畸变,空泡振荡的非对称性增强。这一方面会导致更多空泡能量转移到重建空泡中,引起重建空泡振荡周期明显延长,并降低坍塌冲击波的峰值强度;另一方面,非对称振荡会导致多个坍塌冲击波的形成,使得冲击波能量被分散,从而降低其峰值强度。值得注意的是,重建空泡振荡周期与坍塌冲击波强度的相对变化趋势并不完全同步。相对间隔从0变化到0.2时,坍塌冲击波强度逐渐下降并在γ=0.2处到达极小值,重建空泡振荡周期则逐渐增加到一个极大值。随着相对间隔γ的进一步增加,坍塌冲击波强度开始回升而重建空泡振荡周期逐渐下降,但是重建空泡振荡周期γ在0.4左右降到极小值之后开始增加,而坍塌冲击波强度则是在γ=0.5附近达到极大值后开始下降。这种不同步可能与融合空泡非对称坍塌引起的多个坍塌冲击波形成有关。对于两个尺寸相近的空泡,其融合过程并不会引起重建空泡的分裂,故重建空泡的振荡周期可以定性地表征转移到重建空泡中能量的大小。而由非对称坍塌引起的多坍塌冲击波导致了坍塌冲击波的强度与转移到坍塌冲击波的能量不是正相关关系。因此,在0.4<γ<0.5范围内,重建空泡的振荡周期和冲击波强度都随着相对间隔的增加而增大,这是由多坍塌冲击波现象的减弱引起的。同时可以看到,在γ=0.2和γ=0.5附近,重建空泡的振荡周期几乎相同,但坍塌冲击波强度在γ=0.2附近处于极小值而在γ=0.5附近处于极大值,这说明在γ=0.2附近的多坍塌冲击波形成效应非常明显。也可以看出,当γ>0.5时,重建空泡的振荡周期不再显著变化,而坍塌冲击波又开始明显下降(Tosc1=70 μs时该现象非常明显),这意味着多坍塌冲击波效应又开始增强。

5 结论

利用单脉冲激光诱导形成位置、大小可控的两点击穿,引入高速摄像机、散射光检测和声学检测等方式来研究具有相似大小的双空泡振荡行为。实验结果表明,具有相似尺寸的融合双空泡的振荡行为与相对间隔密切相关。相对间隔的增加能显著增强融合空泡振荡的非对称性,但融合空泡的第一振荡周期不受相对间隔的影响,且整体振荡行为依旧可用R-P模型来描述。相对间隔的改变对于坍塌冲击波的形成和重建空泡的振荡影响非常大,随着相对间隔的增大,坍塌冲击波强度呈现先减小、再增大、又减小的趋势,而重建空泡振荡周期的变化趋势则相反。

参考文献

[1] Liu X M, Hou Y F, Liu X H, et al. Oscillation characteristics of a laser-induced cavitation bubble in water at different temperatures[J]. Optik, 2011, 122(14): 1254-1257.

[2] Supponen O, Obreschkow D, Farhat M. Rebounds of deformed cavitation bubbles[J]. Physical Review Fluids, 2018, 3(10): 103604.

[3] Cleve S, de Inserra C, Prentice P. Contrast agent microbubble jetting during initial interaction with 200-kHz focused ultrasound[J]. Ultrasound in Medicine & Biology, 2019, 45(11): 3075-3080.

[4] Rosselló J M, Lauterborn W, Koch M, et al. Acoustically induced bubble jets[J]. Physics of Fluids, 2018, 30(12): 122004.

[5] Gerold B, Kotopoulis S, McDougall C, et al. Laser-nucleated acoustic cavitation in focused ultrasound[J]. The Review of Scientific Instruments, 2011, 82(4): 044902.

[6] 刘涛, 王江安, 宗思光, 等. 激光空泡在刚性壁面附近空蚀特性[J]. 强激光与粒子束, 2011, 23(2): 298-302.

    Liu T, Wang J A, Zong S G, et al. Cavitation erosion by laser-generated bubble near rigid boundary[J]. High Power Laser and Particle Beams, 2011, 23(2): 298-302.

[7] Brujan E A, Nahen K, Schmidt P, et al. Dynamics of laser-induced cavitation bubbles near an elastic boundary[J]. Journal of Fluid Mechanics, 2001, 433: 251-281.

[8] Han B, Köhler K, Jungnickel K, et al. Dynamics of laser-induced bubble pairs[J]. Journal of Fluid Mechanics, 2015, 771: 706-742.

[9] Cui P, Wang Q X, Wang S P, et al. Experimental study on interaction and coalescence of synchronized multiple bubbles[J]. Physics of Fluids, 2016, 28(1): 012103.

[10] 付磊, 王思琪, 辛静, 等. 纳秒激光在水和金纳米球溶液中的光致击穿研究[J]. 中国激光, 2018, 45(2): 0207029.

    Fu L, Wang S Q, Xin J, et al. Research of optical breakdown induced by nanosecond laser in water and gold nanosphere solutions[J]. Chinese Journal of Lasers, 2018, 45(2): 0207029.

[11] Fu L, Wang S Q, Xin J, et al. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser[J]. Optics Express, 2018, 26(22): 28560-28575.

[12] Tomita Y, Shima A, Sato K. Dynamic behavior of two-laser-induced bubbles in water[J]. Applied Physics Letters, 1990, 57(3): 234-236.

[13] Lim K Y, Quinto-Su P A, Klaseboer E, et al. Nonspherical laser-induced cavitation bubbles[J]. Physical Review E, 2010, 81: 016308.

[14] Wang S Q, Fu L, Xin J, et al. Photoacoustic response induced by nanoparticle-mediated photothermal bubbles beyond the thermal expansion for potential theranostics[J]. Journal of Biomedical Optics, 2018, 23(12): 125002.

[15] Vogel A, Noack J, Hüttman G, et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Applied Physics B, 2005, 81(8): 1015-1047.

[16] Fong S W, Adhikari D, Klaseboer E, et al. Interactions of multiple spark-generated bubbles with phase differences[J]. Experiments in Fluids, 2009, 46(4): 705-724.

[17] Bremond N, Arora M, Ohl C D, et al. Controlled multibubble surface cavitation[J]. Physical Review Letters, 2006, 96(22): 224501.

[18] Bremond N, Arora M, Ohl C D, et al. Cavitation on surfaces[J]. Journal of Physics: Condensed Matter, 2005, 17(45): S3603-S3608.

[19] 张姝红, 周华, 权琳, 等. 水下爆炸气泡脉动试验研究[J]. 爆破, 2014, 31(1): 4.

    Zhang S H, Zhou H, Quan L, et al. Experimental study for bubble impulsion in underwater Explosion[J]. Blasting, 2014, 31(1): 4.

[20] 陈永义, 鲍立荣, 汪辉, 等. 激光液相烧蚀法制备纳米粒子研究进展[J]. 中国激光, 2021, 48(6): 0600002.

    Chen Y Y, Bao L R, Wang H, et al. Research progress in preparation of nanoparticles by laser ablation in liquid[J]. Chinese Journal of Lasers, 2021, 48(6): 0600002.

[21] 顾清, 王佳壮, 杜晓凡, 等. 金纳米颗粒介导的细胞光穿孔表征方法[J]. 中国激光, 2020, 47(2): 0207021.

    Gu Q, Wang J Z, Du X F, et al. Cell optoporation characterization method for gold-nanoparticle mediation[J]. Chinese Journal of Lasers, 2020, 47(2): 0207021.

[22] Mitchell T M, Hammitt F G. Asymmetric cavitation bubble collapse[J]. Journal of Fluids Engineering, 1973, 95(1): 29-37.

[23] Lauterborn W, Hentschel W. Cavitation bubble dynamics studied by high speed photography and holography: part one[J]. Ultrasonics, 1985, 23(6): 260-268.

[24] Lauterborn W, Hentschel W. Cavitation bubble dynamics studied by high speed photography and holography: part two[J]. Ultrasonics, 1986, 24(2): 59-65.

[25] Chew L W, Klaseboer E, Ohl S W, et al. Interaction of two differently sized oscillating bubbles in a free field[J]. Physical Review E, 2011, 84(6): 066307.

[26] 韩冰. 激光空泡相互作用及非对称溃灭的力学特性研究[D]. 南京:南京理工大学,2013.

    HanB. Interaction of laser-induced cavitation bubbles and mechanical effects from the nonspherical bubble collapse[D]. Nanjing: Nanjing University of Science and Technology, 2013.

[27] Bremond N, Arora M, Dammer S M, et al. Interaction of cavitation bubbles on a wall[J]. Physics of Fluids, 2006, 18(12): 121505.

[28] Blake J R, Robinson P B, Shima A, et al. Interaction of two cavitation bubbles with a rigid boundary[J]. Journal of Fluid Mechanics, 1993, 255: 707-721.

[29] Zhang A M, Yao X L. The interaction between multiple bubbles and the free surface[J]. Chinese Physics B, 2008, 17(3): 927-938.

[30] Doinikov A A, Bienaimé D, Gonzalez-Avila S R, et al. Nonlinear dynamics of two coupled bubbles oscillating inside a liquid-filled cavity surrounded by an elastic medium[J]. Physical Review E, 2019, 99: 053106.

[31] Nath A, Khare A. Transient evolution of multiple bubbles in laser induced breakdown in water[J]. Laser and Particle Beams, 2011, 29(1): 1-9.

[32] Han R, Zhang A M, Liu Y L. Numerical investigation on the dynamics of two bubbles[J]. Ocean Engineering, 2015, 110: 325-338.

[33] Han R, Li S, Zhang A M, et al. Modelling for three dimensional coalescence of two bubbles[J]. Physics of Fluids, 2016, 28(6): 062104.

[34] Li S, Ni B Y. Simulation on the interaction between multiple bubbles and free surface with viscous effects[J]. Engineering Analysis with Boundary Elements, 2016, 68: 63-74.

[35] Li T, Zhang A M, Wang S P, et al. Nonlinear interaction and coalescence features of oscillating bubble pairs: experimental and numerical study[J]. Physics of Fluids, 2019, 31(9): 092108.

[36] Han R, Tao L B, Zhang A M, et al. A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall[J]. Physics of Fluids, 2019, 31(6): 062107.

[37] Sankin G N, Yuan F, Zhong P. Pulsating tandem microbubble for localized and directional single-cell membrane poration[J]. Physical Review Letters, 2010, 105(7): 078101.

[38] Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, 1917, 34(200): 94-98.

[39] Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277-282.

[40] Lauterborn W, Kurz T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10): 106501.

[41] Vogel A, Noack J, Nahen K, et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales[J]. Applied Physics B, 1999, 68(2): 271-280.

[42] Vogel A, Nahen K, Theisen D, et al. Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption[J]. Applied Optics, 1999, 38(16): 3636-3643.

[43] Vogel A, Busch S, Jungnickel K, et al. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses[J]. Lasers in Surgery and Medicine, 1994, 15(1): 32-43.

[44] Tian Y, Hou S Y, Wang L T, et al. CaOH molecular emissions in underwater laser-induced breakdown spectroscopy: spatial-temporal characteristics and analytical performances[J]. Analytical Chemistry, 2019, 91(21): 13970-13977.

[45] LauterbornW, VogelA. Shock wave emission by laser generated bubbles[M]//Delale C F. Bubble dynamics and shock waves. Shock wave science and technology reference library, 2013, 8: 67-103.

[46] Isselin J C, Alloncle A P, Autric M. On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena[J]. Journal of Applied Physics, 1998, 84(10): 5766-5771.

[47] Brujan E A, Keen G S, Vogel A, et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary[J]. Physics of Fluids, 2002, 14(1): 85-92.

[48] Supponen O, Obreschkow D, Kobel P, et al. Shock waves from nonspherical cavitation bubbles[J]. Physical Review Fluids, 2017, 2(9): 093601.

付磊, 王萍, 王斯佳, 辛静, 张璐薇, 张镇西, 王晶, 姚翠萍. 纳秒脉冲激光诱导的水中双空泡振荡研究[J]. 中国激光, 2022, 49(4): 0407001. Lei Fu, Ping Wang, Sijia Wang, Jing Xin, Luwei Zhang, Zhenxi Zhang, Jing Wang, Cuiping Yao. Dynamics of Bubble Pairs in Water Induced by Focused Nanosecond Laser Pulse[J]. Chinese Journal of Lasers, 2022, 49(4): 0407001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!