光学学报, 2017, 37 (4): 0414004, 网络出版: 2017-04-10  

激光喷丸强化IN718合金晶粒重排与疲劳特性

Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212013
2 常州信息职业技术学院常州市大型塑料件智能化制造重点实验室, 江苏 常州 213164
摘要
为了揭示激光喷丸(LP)强化IN718合金疲劳寿命增益的机制,研究了合金喷丸前后晶粒重排与疲劳特性的关系。结果表明,LP后试样表层的塑性形变深度最大可达33.7 μm,合金的最大疲劳寿命增益可达188%;激光冲击波诱导产生的表层残余压应力随激光功率密度的增大而增大,但增幅逐渐减小; 疲劳试验后,表层残余应力出现了52%的释放;LP后试样表层晶粒出现细化现象,细化深度达到175 μm; 位错滑移和位错攀移以及孪晶等共同作用使原始晶粒内形成了亚晶粒,最终细化了晶粒组织。
Abstract
In order to clarify the mechanism of fatigue life enhancement of IN718 alloy strengthened by laser peening (LP), the relationship between the grain rearrangement and fatigue property of the alloy before and after LP is studied. The results show that, after LP, the maximum plastic deforming depth of sample surface reaches 33.7 μm, and the maximum fatigue life enhancement of the alloy reaches 188%. With the increase of laser power density, the surface residual compressive stress induced by laser shock wave increases, but the amplification decreases gradually. After the fatigue test, the release of the surface residual stress of 52% appears. The grain refinement phenomenon is found on the sample surface after LP, and the refining depth reaches 175 μm. The interaction among the dislocation sliding, dislocation climbing and twin crystal results in the generation of subgrains, and eventually the grain structure is refined.
参考文献

[1] Gnanamuthu D S. Laser surface treatment[J]. Optical Engineering, 1980, 19(5): 195783

[2] Vaithilingam J, Goodridge R D, Haguer J M, et al. The effect of laser remelting on the surface chemistry of Ti6AL4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 232(9): 1-8.

[3] 卢云龙, 张培磊, 马 凯, 等. 激光合金化Ni-W-Si涂层的组织与性能研究[J]. 稀有金属材料与工程, 2016, 45(2): 375-380.

    Lu Yunlong, Zhang Peilei, Ma Kai, et al. Microstructure and properties of laser alloying Ni-W-Si composite coating[J]. Rare Metal Materials and Engineering, 2016, 45(2): 375-380.

[4] Yue L Y, Wang Z B, Li L. Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses[J]. Optics & Laser Technology, 2013, 45(2): 533-539.

[5] Arias-González F, del Val J, Comesaa R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Applied Surface Science, 2015, 374: 197-205.

[6] Sheng J, Huang S, Zhou J Z, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics & Laser Technology, 2016, 77: 169-176.

[7] 周建忠, 徐增闯, 黄 舒, 等. 基于不同应力比下激光喷丸强化6061-T6铝合金的疲劳裂纹扩展性能研究[J]. 中国激光, 2011, 38(9): 0903006.

    Zhou Jianzhong, Xu Zengchuang, Huang Shu, et al. Effects of different stress ratios on fatigue crack growth in laser shot peened 6061-T6 aluminum alloy[J]. Chinese J Lasers, 2011, 38(9): 0903006.

[8] Gencalp Irizalp S, Saklakoglu N. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing[J]. Optics & Lasers in Engineering, 2016, 77: 183-190.

[9] Ren X D, Huang J J, Zhou W F, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing[J]. Materials & Design, 2015, 86: 421-426.

[10] Zhang Y, You J, Lu J, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

[11] Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science & Engineering A, 2010, 527(15): 3411-3415.

[12] Correa C, Gil-Santos A, Porro J A, et al. Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement[J]. Materials & Design, 2015, 79: 106-114.

[13] Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science & Engineering A, 2011, 528(13-14): 4783-4788.

[14] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

[15] Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy[J]. Experimental Mechanics, 2014, 54(9): 1597-1611.

[16] Gill A S, Telang A, Vasudevan V K. Characteristics of surface layers formed on Inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 2015, 225: 463-472.

[17] 章海峰, 黄 舒, 盛 杰, 等. 激光喷丸IN718镍基合金残余应力高温松弛及晶粒演变特征[J]. 中国激光, 2016, 43(2): 203008.

    Zhang Haifeng, Huang Shu, Sheng Jie, et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese J Lasers, 2016, 43(2): 0203008.

[18] Denda T, Kikuchi H, Teramoto T, et al. Effect of grain size on fatigue life and fatigue crack growth mechanism of IN718[J]. Transactions of the Japan Society of Mechanical Engineers, 1994, 60(576): 1746-1752.

[19] 李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究[J]. 物理学报, 2003, 52(8): 2092-2095.

    Li Meijuan, Hu Haiyun, Xing Xiusan. The relationship between fatigue life and grain size of polycrystalline metals[J]. Acta Physica Sinica, 2003, 52(8): 2092-2095.

[20] Hattori H, Kitagawa M, Ohtomo A. Effect of grain size on high temperature low-cycle fatigue properties of Inconel 617[J]. Journal of the Iron and Steel Institute of Japan, 1982, 68(16): 2521-2530.

[21] Hammersley G, Hackel L A, Harris F. Surface prestressing to improve fatigue strength of components by laser shot peening[J]. Optics & Lasers in Engineering, 2000, 34(4-6): 327-337.

[22] Zhuang W Z, Halford G R. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23(s1): 31-37.

[23] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

[24] Sadananda K, Shahinian P. Review of the fracture mechanics approach to creep crack growth in structural alloys[J]. Engineering Fracture Mechanics, 1981, 15(3-4): 327-342.

[25] 董世柱. 疲劳状态下亚晶粒演变过程的研究[J]. 机械设计与制造, 1995(6): 46-47.

    Dong Shizhu. Study of subgrain evolution under fatigue[J]. Machinery Design & Manufacture, 1995(6): 46-47.

黄舒, 盛杰, 谭文胜, 王作伟, 孟宪凯, 刘牧熙, 杨小乐. 激光喷丸强化IN718合金晶粒重排与疲劳特性[J]. 光学学报, 2017, 37(4): 0414004. Huang Shu, Sheng Jie, Tan Wensheng, Wang Zuowei, Meng Xiankai, Liu Muxi, Yang Xiaole. Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening[J]. Acta Optica Sinica, 2017, 37(4): 0414004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!