红外与毫米波学报, 2020, 39 (1): 13, 网络出版: 2020-03-12   

基于10.6微米全光深度神经网络衍射光栅的设计与实现

Design and implementation of diffraction grating based on 10.6μm all-optical depth neural network
作者单位
1 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing0092, China
2 Beijing ZX Intelligent Chip Technology Co., Ltd., Beijing100876,China
3 The 11th Research Institute of China Electronic Science & Technology Group Inc., Beijing100015,China
图 & 表

图 1. 倍频器的架构示意图

Fig. 1. Diagram of the doubler circuit architecture.

下载图片 查看原文

图 2. (a)D波段倍频器输入模式场分布,(b)倍频器输出二次谐波场分布

Fig. 2. (a) Field distribution of incident frequency, and (b) field distribution of output second harmonic in the proposed doubler

下载图片 查看原文

图 3. (a)D波段倍频器腔体照片,(b)装配后的127μm氮化铝倍频器电路照片

Fig. 3.

下载图片 查看原文

图 4. (a)D波段功率合成式倍频器A腔体照片,(b) D波段功率合成式倍频器B腔体照片

Fig. 4. (a) Photograph of the D-band power-combined doubler A, (b) Photograph of the D-band power-combined doubler B

下载图片 查看原文

图 5. D波段倍频器的测试框图

Fig. 5. Test configuration of the proposed D band doubler

下载图片 查看原文

图 6. (a)D波段倍频器驱动功率测试曲线,(b) D波段单路倍频器输出功率和效率测试曲线

Fig. 6. (a) Test results of the pumping power of D band doubler. (b) Measured results of the output power of the single D band doubler

下载图片 查看原文

图 7. 110 GHz二倍频器测试结果:(a) V波段放大器可提供的功率,(b) 偏压为12V时合成式倍频器A的输出功率和效率,(c) 合成式倍频器B的输出功率和效率

Fig. 7. Measurement of the power-combined doubler: (a) available pumping power of the V-band amplifier, (b) output power and efficiency of combined doubler A with a bias voltage of +12V, (c) output power and efficiency of combined doubler B

下载图片 查看原文

表 1相邻频段的倍频器性能比较

Table1. Doubler performance comparison in adjacent band

RefAnodesPin(mW)Peak power(mV)EfficiencyBand(FBW%)Comment
[4]4×2500130 mW@180 GHz20~37%170~188 GHz(10%)H-plane combined
[6]6300~600108 mW@110 GHz10~22%102~114 GHz(11%)Single
[9]4×2250~40040 mW@178 GHz10~12%172~196 GHz(13.3%)E-plane combined
[10]6×2800~900195 mW@116 GHz10~30%100~120 GHz(17%)E-plane combined
[11]6×2300~60059 mW@168 GHz-164~172 GHz(>5%)E-plane combined
This Work6250~40096.5 mW@104.6 GHz20~33.2%100~115 GHz(13.6%)Single
6×2560~900211.4 mW@102.3 GHz18~29.6%100~115 GHz(13.6%)E-plane combined
6×2560~900212 mW@108.6 GHz15~28.36%100~114 GHz(12.7%)E-plane combined

查看原文

Hai-Sha NIU, Ming-Xin YU, Bo-Fei ZHU, Qi-Feng YAO, Qian-Kun ZHANG, Li-Dan LU, Guo-Shun ZHONG, Lian-Qing ZHU. 基于10.6微米全光深度神经网络衍射光栅的设计与实现[J]. 红外与毫米波学报, 2020, 39(1): 13. Hai-Sha NIU, Ming-Xin YU, Bo-Fei ZHU, Qi-Feng YAO, Qian-Kun ZHANG, Li-Dan LU, Guo-Shun ZHONG, Lian-Qing ZHU. Design and implementation of diffraction grating based on 10.6μm all-optical depth neural network[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 13.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!