Photonics Research, 2015, 3 (5): 05000243, Published Online: Jan. 6, 2016  

Observation of high-Q optomechanical modes in the mounted silica microspheres Download: 709次

Author Affiliations
1 Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China,Hefei 230026, China
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
Abstract
An efficient method to mount a coupled silica microsphere and tapered fiber system is proposed and demonstrated experimentally. For the purpose of optomechanical studies, high-quality-factor optical (Qo ~ 108) and mechanical modes (Qm ~ 0.87 × 104<)sup>) are maintained after the mounting process. For the mounted microsphere, the coupling system is more stable and compact and, thus, is beneficial for future studies and applications based on optomechanical interactions. Especially, the packaged optomechanical system, which is tested in a vacuum chamber, paves the way toward quantum optomechanics research in cryostat.
References

[1] T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321, 1172–1176 (2008).

[2] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[3] A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).

[4] A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).

[5] Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).

[6] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gr blacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[7] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[8] H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[9] C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).

[10] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).

[11] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).

[12] G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).

[13] E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).

[14] V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[15] C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).

[16] J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).

[17] V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).

[18] Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).

[19] Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).

[20] C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).

[21] K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[22] M. S. Murib, E. Yüce, O. Gürlü, and A. Serpengüzel, “Polarization behavior of elastic scattering from a silicon microsphere coupled to an optical fiber,” Photon. Res. 2, 45–50 (2014).

[23] A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering- gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).

[24] C.-L. Zou, F. J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21, 9982–9995 (2013).

[25] A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).

[26] Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).

[27] P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).

[28] P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).

[29] F. Vanier, Y.-A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).

[30] Y.-C. Dong, K.-Y. Wang, and X.-Y. Jin, “Packaged microspheretaper coupling system with a high Q factor,” Appl. Opt. 54, 277–284 (2015).

[31] F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).

[32] Y.-S. Park, “Radiation pressure cooling of a silica optomechanical resonator,” Ph.D. thesis (University of Oregon, 2009).

[33] Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

[34] T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).

[35] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerrnonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).

[36] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).

[37] R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).

[38] G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).

[39] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phasematched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).

[40] C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).

[41] B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704–715 (1999).

[42] C.-H. Dong, C.-L. Zou, J.-M. Cui, Y. Yang, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).

Zhen Shen, Zhong-Hao Zhou, Chang-Ling Zou, Fang-Wen Sun, Guo-Ping Guo, Chun-Hua Dong, Guang-Can Guo. Observation of high-Q optomechanical modes in the mounted silica microspheres[J]. Photonics Research, 2015, 3(5): 05000243.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!