光散射学报, 2017, 29 (2): 138, 网络出版: 2017-07-05  

纳米级光滑石墨表面的拉曼光谱表征

Raman Spectroscopy Characterization of Nanometer Level Flat Graphite Surface
作者单位
1 湖北工业大学 电气与电子工程学院,武汉 430068
2 清华大学 精密仪器系,北京 100084
3 军械工程学院 电子与光学工程系,石家庄 050003
摘要
石墨微结构的表面一般为原子级光滑或纳米级光滑,是研究表面、界面物理性质的重要基础,对结构超润滑、微机电器件的研究和应用非常重要。为了解石墨微结构表面的状态和性质,其无损表征具有重要意义。通过微加工方法制备出石墨微结构,使用微纳机械手上的针尖推动石墨微结构上部可以得到原子级光滑或纳米级光滑的石墨表面。使用拉曼光谱对获得的石墨表面进行表征。通过与原子力显微镜和电子显微镜的表征结果进行对比发现,拉曼光谱能够准确反映石墨表面的缺陷程度,同时具有非接触、无损和快速的优点。这表明拉曼光谱在纳米级光滑石墨表面的表征中能够提供可靠表征信息,并且检测快速、不破坏样品,为石墨结构超润滑和MEMS器件的后续研究和应用奠定了基础。
Abstract
The atomically flat or nanometer level flat surface of graphite microstructure is an important foundation for studying the physical properties of the surface and interface and extremely important for the research and application of superlubricity and MEMS devices.In order to understand the state and properties of the surface of the graphite microstructure,it is of great significance to characterize non-destructively.The graphite microstructure was prepared by micromachining technology.Atomically flat or nanometer level flat graphite surfaces can be obtained by shearing the upper part of graphite mesa microstructure with a probe held by a manipulator.The surface of the graphite microstructure was characterized by Raman spectroscopy.By comparing with the results of atomic force microscopy,the results show that the Raman spectra can accurately reflect the degree of defects on the surface of graphite,and have the advantages of non-contact,non-destructive and fast.This shows that Raman spectroscopy can provide reliable characterization information in the characterization of the atomically flat graphite surface,and it can be used for rapid and nondestructive testing of samples,which lays the foundation for further research and application of graphite superlubricity and MEMS devices.
参考文献

[1] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887): 385-388.

[2] Novoselov K S.Nobel Lecture: Graphene: Materials in the Flatland[J].Rev Modem Phys,2011,83: 837-849.

[3] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano letters,2008,8(3): 902-907.

[4] Liu Z,Yang J,Grey F,et al.Observation of microscale superlubricity in graphite[J].Phys Rev Lett,2012,108(20): 205503.

[5] Lu X,Yu M,Huang H,et al.Tailoring graphite with the goal of achieving single sheets[J].Nanotechnology,1999,10(3): 269.

[6] Bunch J S,Van Der Zande A M,Verbridge S S,et al.Electromechanical resonators from graphene sheets[J].Science,2007,315(5811): 490-493.

[7] Fistul M V,Efetov K B.Electromagnetic-field-induced suppression of transport through n-p junctions in graphene[J].Phys Rev Lett,2007,98(25): 256803.

[8] Zheng Q S,Jiang Q.Multiwalled carbon nanotubes as gigahertz oscillators[J].Phys Rev Lett,2002,88: 045503.

[9] 孙玉虹,曹嘉峰,王成,等.硅基 MEMS 红外光源光谱特性测试研究[J].红外技术,2015,37(4): 347-350.(Sun Yuhong,Cao Jiafeng,Wang Cheng,et al.The testing research of spectral characteristics of silicon MEMS infrared source[J].Infrared Technology,2015,37(4): 347-350)

[10] 冯泽阳,张卫红,郑颖,等.2000年以来拉曼光谱在考古中的应用[J].光散射学报,2016,28(1): 27-41.(Feng Zeyang,Zhang Weihong,Zheng Ying,et al.Raman spectroscopy in archaeological science since 2000[J].J Light Scatt,2016,28(1): 27-41)

[11] 赵琦,刘翠玲,孙晓荣,等.基于SERS法的苹果中农药残留的定性及定量分析[J].光散射学报,2016,28(1): 6-11.(Zhao Qi,Liu Cuiling,Sun Xiaorong,et al.Qualitative and quantitative analyzing on pesticide residue in apple using SERS[J].J Light Scatt,2016,28(1): 6-11)

[12] 吴江滨,张昕,韩文鹏,等.转角多层石墨烯层间耦合的共振拉曼光谱研究[J].光散射学报,2016,28(1): 16-22.(Wu Jiangbin,Zhang Xin,Han Wenpeng,et al.Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy[J].J Light Scatt,2016,28(1): 16-22)

[13] 王楠,程振兴,张鸿鹏,等.拉曼光谱检测水中痕量甲基膦酸[J].光散射学报,2016,28(1): 23-26.(Wang Nan,Cheng Zhenxing,Zhang Hongpeng,et al.Raman spectroscopy for phosphonic acid detection in water[J].J Light Scatt,2016,28(1): 23-26)

[14] 刘艳,司民真,李伦,等.柳树病叶的傅里叶变换红外光谱研究[J].光散射学报,2016,28(1): 84-90.(Liu Yan,Si Minzhen,Li Lun,et al.Study of willow diseased leaves by Fourier transform infrared spectroscopy[J].J Light Scatt,2016,28(1): 84-90)

[15] Das A,Chakraborty B,Sood A K.Raman spectroscopy of graphene on different substrates and influence of defects[J].Bulletin of Materials Science,2008,31(3): 579-584.

[16] Ferrari A C,Robertson J.Raman spectroscopy in carbon: from nanotubes to diamond[M].London: The Royal Society,2004: 4-6.

[17] 吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3): 301-318.(Wu Juanxia,Xu Hua,Zhang Jin.Raman spectroscopy of graphene[J].Acta Chimica Sinica,2014,72(3): 301-318)

宋彦东, 谢红刚, 邹玲, 史云胜. 纳米级光滑石墨表面的拉曼光谱表征[J]. 光散射学报, 2017, 29(2): 138. SONG Yandong, XIE Honggang, ZOU Ling, SHI Yunsheng. Raman Spectroscopy Characterization of Nanometer Level Flat Graphite Surface[J]. The Journal of Light Scattering, 2017, 29(2): 138.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!