中国激光, 2016, 43 (2): 0205001, 网络出版: 2016-01-25   

基于掺杂粉末直拉棒工艺掺镱光子晶体光纤激光特性

Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology
夏长明 1,2,*田洪春 1,2侯峙云 1,2刘建涛 1,2张飒 1,2张卫 1,2付建 1,2吴嘉乐 1,2周桂耀 1,2
作者单位
1 华南师范大学信息光电子科技学院广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
2 广东高校特种功能光纤工程技术研究中心, 广东 广州 510006
引用该论文

夏长明, 田洪春, 侯峙云, 刘建涛, 张飒, 张卫, 付建, 吴嘉乐, 周桂耀. 基于掺杂粉末直拉棒工艺掺镱光子晶体光纤激光特性[J]. 中国激光, 2016, 43(2): 0205001.

Xia Changming, Tian Hongchun, Hou Zhiyun, Liu Jiantao, Zhang Sa, Zhang Wei, Fu Jian, Wu Jiale, Zhou Guiyao. Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology[J]. Chinese Journal of Lasers, 2016, 43(2): 0205001.

参考文献

[1] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: Current status and future perspectives (invited paper) [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] V Fomin, M Abramov, A Ferin, et al..10 kW single mode fiber laser[C]. SyTu-1.3, Symposium on High-Power Fiber Lasers, 14th International Conference, Laser Optics, 2010.

[3] X Fang, M Hu, C Xie, et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Opt Lett, 2011, 36(6): 1005-1007.

[4] P G Yan, G L Zhang, H F Wei, et al.. Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output[J]. J Lightwave Technol, 2013, 31(23): 3658-3662.

[5] H F Wei, H W Chen, S P Chen, et al.. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power[J]. Laser Phys Lett, 2013, 10(4): 045101.

[6] X H Fang, M L Hu, B W Liu, et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Opt Lett, 2010, 35(14): 2326-2328.

[7] E Shcherbakov, V Fomin, A Abramov, et al.. Industrial grade 100 kW power CW fiber laser[C]. Advanced Solid-State Lasers Congress, 2013: ATh4A.2.

[8] 张汉伟, 周朴, 王小林, 等. 不同基质掺Yb3+光纤的单频极限输出功率[J]. 光学学报, 2014, 34(1): 0114003.

    Zhang Hanwei, Zhou Pu, Wang Xiaolin, et al.. Power limit of different single -frequency Yb3+-doped fibers[J]. Acta Optica Sinica, 2014, 34(1): 0114003.

[9] H J Otto, F Stutzki, N Modsching, et al..2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Opt Lett, 2014, 39(22): 6446-6448.

[10] E Stiles. New developments in IPG fiber laser technology[C]. Proceedings of the 5th International Workshop on Fiber Laser, 2009, 1: 1-20.

[11] 李平雪, 赵自强, 张光举, 等. 大模场双包层掺镱光子晶体光纤发射式石墨烯被动调Q 锁模激光器[J]. 中国激光, 2014, 41(4): 0402001.

    Li Pingxue, Zhao Ziqiang, Zhang Guangju, et al.. Large-mode-area double cladding Yb-doped photonic crystal fiber Qswitched mode-locked laser with graphene-based saturable absorber mirror[J]. Chinese J Lasers, 2014, 41(4): 0402001.

[12] 李平雪, 杨春, 赵自强, 等. 1027 nm 大模场双包层光子晶体光纤半导体可饱和吸收镜锁模激光器[J]. 中国激光, 2014, 41(5): 0502007.

    Li Pingxue, Yang Chun, Zhao Ziqiang, et al.. 1027 nm large-mode-area double-cladding photonic crystal fiber mode-locked laser based on SESAM[J]. Chinese J Lasers, 2014, 41(5): 0502007.

[13] J J Koponen, L Petit, T Kokki, et al.. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers[J]. Opt Eng, 2011, 50(11): 111605.

[14] A Langner, M Such, G Sch tz, et al.. Multi-kW single fiber laser based on an extra large mode area fiber design[C]. SPIE, 2012, 8237: 82370F.

[15] M Devautour, P Roy, S Février, et al.. Nonchemical-vaper-deposition process for fabrication of highly efficient Yb-doped large core fiber[J]. Appl Opt, 2009, 48(31): G139-G142.

[16] M Leich, F Just, A Langner, et al.. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Opt Lett, 2011, 36(9): 1557-1559.

[17] S Liu, M Wang, Q Zhou, et al.. Ytterbium-doped silica photonic crystal fiber laser fabricated by the nanoporous glass sintering technique[J]. Laser Phys, 2014, 24(6): 065801.

[18] S K Wang, S Y Feng, M Wang, et al.. Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method[J]. Laser Phys Lett, 2013, 10(11): 115802.

[19] J L Wu, W Zhang, G Y Zhou, et al.. Design and fabrication of ytterbium-doped photonic crystal fiber with low non-linearity [J]. Laser Phys, 2015, 25(5): 055105.

[20] C M Xia, G Y Zhou, W Zhang, et al.. Fabrication and laser performance of Yb3+/Al3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method[J]. Opt Fiber Technol, 2015, 25: 20-24.

[21] C M Xia, G Y Zhou, W Zhang, et al.. Optical properties of Tm3+-doped photonic crystal fiber fabricated by non-chemical vapor deposition method[J]. Optoelctronics and Advanced Materials-Rapid Communications, 2015, 9: 619-622.

[22] C M Xia, G Y Zhou, W Zhang, et al.. Optical properties of Yb3+/Ho3+ co-doped air cladding silica-based fiber fabricated with plasma non-chemical vapor deposition method[J]. Appl Phys A, 2015, 118(2): 523-529.

[23] C M Xia, G Y Zhou, W Zhang, et al.. Blue and near-infrared up-conversion in double-air-cladding Tm3+-doped silica fiber under 1064 nm excitation[J]. Opt Quant Electron, 2015, 47(11): 3435-3444.

[24] 刘建涛, 周桂耀, 夏长明. 基于粉末烧结技术制备镱铝共掺大模场光子晶体光纤[J]. 光子学报, 2013, 42(5): 552-554.

    Liu Jiantao, Zhou Guiyao, Xia Changming. Fabrication of Yb3+/Al3+ co-doped large-mode-area photonic crystal fiber based on powder sintering technology[J]. Acta Photonica Sinica, 2013, 42(5): 552-554.

[25] C Wang, G Y Zhou, C M Xia, et al.. Influence of the melting atmosphere on Yb3+/Al3+ co-doped silica glass with powder melting technology[J]. Opt Fiber Technol, 2014, 20(2): 106.

[26] P G Yan, J Shu, S C Ruan, et al.. Polarization dependent visible supercontinuum generation in the nanoweb fiber[J]. Opt Express, 2011, 6(4): 4985-4990.

[27] J Limpert, T Schreiber, S Nolte. High power air-clad large-mode-area photonic crystal fiber laser[J]. Opt Express, 2003, 11(7): 818-823.

[28] 黄诗盛, 张格霖, 韦会峰, 等. 双包层七芯光子晶体光纤超连续谱的产生及模式分析[J]. 中国激光, 2013, 40(11): 1105002.

    Huang Shisheng, Zhang Gelin, Wei Huifeng, et al.. Supercontinuum generation and mode analysis for double cladding sevencore photonic crystal fiber[J]. Chinese J Lasers, 2013, 40(11): 1105002.

[29] 周德春, 白雪梅, 周航. 大模场面积掺镱微结构光纤的制备与激光性能[J]. 中国激光, 2014, 41(12): 1205006.

    Zhou Dechun, Bai Xuemei, Zhou Hang. Preparation of the large-mode-area ytterbium-doped microstructure fibre and laser performance[J]. Chinese J Lasers, 2014, 41(12): 1205006.

[30] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020001.

    Tao Rumao, Zhou Pu, Xiao Hu, et al.. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.

夏长明, 田洪春, 侯峙云, 刘建涛, 张飒, 张卫, 付建, 吴嘉乐, 周桂耀. 基于掺杂粉末直拉棒工艺掺镱光子晶体光纤激光特性[J]. 中国激光, 2016, 43(2): 0205001. Xia Changming, Tian Hongchun, Hou Zhiyun, Liu Jiantao, Zhang Sa, Zhang Wei, Fu Jian, Wu Jiale, Zhou Guiyao. Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology[J]. Chinese Journal of Lasers, 2016, 43(2): 0205001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!