Yongwei Shi 1,2,3Nan Zhao 1,2,3,*Jiantao Liu 2,3Jiaming Li 2,3,4[ ... ]Guiyao Zhou 2,3
Author Affiliations
Abstract
1 School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China
2 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
3 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China
4 Guangdong Provincial Key Laboratory of Industrial Ultrashort Pulse Laser Technology, Shenzhen 518055, China
In this work, we demonstrated the double-cladding Tm/Al co-doped photonic crystal fiber (PCF) by laser additive manufacturing. The measurements show that the fiber was heavily doped with a Tm3+ concentration of 2.13% (mass fraction) without any crystallization. The splicing property of PCF was studied, and the integrity of the PCF air holes was maintained during the splicing process. The PCF with combiner pigtail has a splice loss of 0.23 dB. The all-fiber Tm/Al co-doped PCF amplifier system achieves a slope efficiency of 13% at 1948 nm with an output laser power of nearly 1.59 W. An upconversion process was also observed under laser excitation with a 1064 nm pulse. This method provides a new idea to deal with Tm-doped PCF fabrication and promotes the promising application of 2 µm fiber lasers.
photonic crystal fiber laser laser amplification 
Chinese Optics Letters
2023, 21(12): 121401
作者单位
摘要
华南师范大学 信息光电子科技学院,广州 510006
kW级高功率激光柔性传输是激光清洗、激光焊接、激光刻蚀等高功率激光加工领域中必备的环节,而实现高功率激光低损耗传输的光纤是其关键器件。目前高功率激光传输光纤采用大芯径传能光纤,仍然存在着弯曲损耗大、柔性差等问题,并且使用过程中要经常维护。华南师范大学特种光纤研究中心提出一种大芯径空气包层微结构光纤,利用包层的空气孔可以极大降低激光泄露的风险,降低光纤制备过程中对耐高温涂敷层的严苛要求,实验结果证实该光纤在室温无制冷条件下可实现kW级激光传输,从而为10 kW级高功率激光柔性传输奠定基础。
高功率激光传输 大芯径光纤 微结构光纤 激光加工 high power laser transimission large core diameter fiber micro structured optical fiber laser processing 
强激光与粒子束
2022, 34(5): 051001
Jiaming Li 1,2,3Chuangkai Li 1,2Yun Chen 1,2Nan Zhao 1,2,*[ ... ]Guiyao Zhou 1,2
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
2 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China
3 Guangdong Provincial Key Laboratory of Industrial Ultrashort Pulse Laser Technology, Shenzhen 518055, China
In this work, we proposed a feasible method to prepare the Bi/Al co-doped silica glass by using laser additive manufacturing technology. Bi was uniformly doped into the silica matrix. The hydroxyl content of the glass sample was measured to be 29.36 ppm. Using an 808 nm laser diode as the excitation source, a broadband near-infrared emission from 1000 to 1600 nm was obtained. The emission peak was centered at 1249 nm, and the corresponding FWHM was more than 400 nm. The results show that the laser additive manufacturing technology is promising to fabricate highly homogeneous Bi-doped core materials with broader emission band, which is beneficial to solving the communication capacity crunch and promotes the development of fiber communication in the upcoming fifth and sixth generation systems.
optical materials bismuth-doped glass broadband fluorescence 
Chinese Optics Letters
2020, 18(12): 121601
作者单位
摘要
华南师范大学广州市特种光纤光子器件与应用重点实验室, 广东 广州 510006
微结构光纤(MOF)在结构和性能上的优越性引起了国内外光纤研究人员的广泛兴趣,成为光电子学领域的前沿热点,并得到了快速发展。MOF根据结构可分为实芯MOF和空芯MOF,根据传输机理可分为全内反射型MOF、光子带隙型MOF和反谐振MOF等多种类型,在激光技术、光传感技术、光通信技术、光电子集成和光纤器件等领域具有重要应用。本文综述了MOF的发展历程,并对MOF的种类、传输机理、结构设计和拉制进行了全面分析和归纳,为未来MOF的研究及应用提供借鉴。
光纤光学 微结构光纤 带隙微结构光纤 空芯反谐振光纤 稀土掺杂微结构光纤 
激光与光电子学进展
2019, 56(17): 170603
杨建菊 1,2,*韩颖 1,2屈玉玮 1,2牛静霞 1,2[ ... ]侯蓝田 1,2
作者单位
摘要
1 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
2 燕山大学 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004
通过研究发现双包层结构能降低石英基光子晶体光纤损耗, 并制备一种高非线性双包层结构石英基光子晶体光纤来进行实验研究.使用钛宝石飞秒激光器将实验室自制的石英基光子晶体光纤在反常色散区泵浦, 研究不同的泵浦功率和泵浦波长对中红外超短脉冲孤子的影响, 并分析了石英基高非线性光子晶体光纤中红外超短脉冲孤子产生的物理机理.结合实验发现在泵浦功率为827 nm, 功率从0.1 W增加到0.42 W时, 中红外第一个孤子随功率增加从1933 nm移动到2403 nm, 可调范围达到470 nm, 为石英基光子晶体光纤产生宽带可调超短脉冲源创造了很好的条件.
中红外 石英基光子晶体光纤 反常色散区 孤子 mid-infrared silica based photonic crystal fiber anomalous dispersion region soliton 
红外与毫米波学报
2017, 36(5): 636
杨建菊 1,2,*韩颖 1,2王伟 1,2周桂耀 1,2[ ... ]牛静霞 1,2
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 燕山大学河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
光子晶体光纤作为光学非线性良好介质, 对超连续谱产生具有重要作用。 深紫外超连续谱光源在许多应用中有急切的需求, 然而由于实验条件和光纤参数等方面的影响, 利用高非线性光子晶体光纤产生深紫外(<280 nm)超连续谱的报道较少。 通过理论和实验研究了高非线性光子晶体光纤在深紫外区的频率变换, 并分析其产生的物理机理。 使用钛宝石飞秒激光器将实验室自制的光子晶体光纤在反常色散区泵浦, 研究了不同泵浦功率和泵浦波长对深紫外区超连续谱的影响, 结果表明: 泵浦波长固定为860 nm时, 深紫外频率光谱展宽范围随泵浦功率的增加而逐渐展宽; 泵浦功率固定为0.4 W时, 泵浦波长的增加不仅展宽超连续谱范围而且极大的提高了深紫外区光谱的转换效率。 当泵浦波长为870 nm, 泵浦功率为0.4 W, 实验所用光子晶体光纤长度为1.45 m, 零色散波长为825 nm时, 光子与色散波的交叉相位调制使深紫外基模超连续谱扩展到最短波长212 nm。
深紫外 光子晶体光纤 反常色散区 超连续谱 Deep ultraviolet Photonic crystal fiber Anomalous dispersion region Supercontinuum 
光谱学与光谱分析
2017, 37(4): 1215
刘志宏 1,2,3,*王伟 1,2,3杨建菊 1,3韩颖 1,3[ ... ]侯蓝田 1,3
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
3 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
对飞秒脉冲泵浦下, 不同锥长及锥腰直径的微结构光纤的超连续谱产生进行了实验研究。 采用“快速低温拉锥方法”, 在保持d/Λ不变的情况下, 对实验室自制的空气孔间距Λ=6.53 μm, 归一化孔径d/Λ=0.79的微结构光纤进行了拉锥, 分别得到6, 8, 10 mm等不同锥长微结构光纤。 理论计算表明, 随着锥长变长, 锥腰直径变小, 锥腰处零色散波长向短波移动: 未拉锥及6, 8和10 mm锥微结构光纤锥腰处零色散波长分别为1 129, 885, 806和637 nm。 利用中心波长为810 nm, 重复频率76 MHz, 脉宽120 fs的钛蓝宝石飞秒激光器对拉锥后微结构光纤进行了实验研究: 锥长为6 mm时, 泵浦光中心波长位于整根光纤的正常色散区, 锥腰的零色散点附近, 内脉冲拉曼散射和级联四波混频是光谱初始展宽的主要因素。 泵浦功率达到450 mW时, 在可见波段390~461 nm及红外波段1 134~1 512 nm形成-5 dB的平坦宽带连续光谱。 泵浦功率达到500 mW时, 出现366~2 450 nm覆盖紫外、 可见、 近红外、 中红外的超连续谱, 其光谱红蓝移边缘已经接近实验用微结构光纤的传输带宽。 锥长为8 mm、 泵浦功率为450 mW时, 在群速度匹配和群加速度失配的共同影响下, 连续谱蓝移边缘达到366 nm, 比6 mm锥时蓝移9 nm; 锥长为10 mm时, 由于锥腰处零色散点移动到可见光区域, 可见区光谱仍能满足相位匹配条件。 通过级联四波混频效应, 在可见区域实现了频率上转换及光谱蓝移。 泵浦光功率达到500 mW时, 在382~412 nm得到谱宽仅为30 nm, 转换效率达到27.7%的频率上转换。
微结构光纤 超连续谱 快速低温拉锥方法 级联四波混频 内拉曼散射 上转换 Microstructure fiber Supercontinuum “fast and cold tapered method” Cascaded four-wave mixing Intrapulse Raman scattering Up conversion 
光谱学与光谱分析
2016, 36(7): 2011
杨建菊 1,2,*周桂耀 1,2韩颖 1,2侯蓝田 1,2[ ... ]苑金辉 3
作者单位
摘要
1 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
2 燕山大学 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004
3 北京邮电大学 信息光子学与光通信国家重点实验室,北京 100876
将钛宝石激光器产生的飞秒激光脉冲泵浦实验室自制的高非线性双折射光子晶体光纤,脉冲的中心波长为820 nm,位于光子晶体光纤的接近于零色散的反常色散区.实验结果表明:随着泵浦功率的增加,一阶孤子的中心波长发生了红移,同时产生的色散波的中心波长则发生蓝移进入可见光区.当泵浦功率达到0.45 W时,色散波与残余泵浦的输出功率比为42.67,色散波的带宽达到81 nm,而处于近红外波段的红移孤子带宽可达231 nm.利用高非线性光子晶体光纤产生近红外波段宽带孤子和可见区高效色敬波的实验对飞秒激光频率转换和光谱展宽具有很好的借鉴意义.
高非线性光子晶体光纤 飞秒激光频率转换 色散波 红移孤子 high nonlinear photonic crystal fiber femtosecond laser frequency conversion dispersion wave redshift soliton 
红外与毫米波学报
2016, 35(4): 477
韩颖 1,2,*刘志宏 1,2毕新英 1,2周桂耀 1,2[ ... ]王伟 1,2
作者单位
摘要
1 燕山大学信息科学与工程学院,河北秦皇岛 066004
2 河北省特种光纤与光纤传感重点实验室,河北秦皇岛 066004
用“快速低温”法,在保持包层空气填充率不变的情况下,对实验室自制的微结构光纤进行了拉锥,得到了锥长分别为 8 mm、10 mm的锥形光纤。利用多极法模拟可知,拉锥前光纤在 1 129 nm具有单个零色散点,拉锥后光纤锥腰处出现双零色散点,对于 8 mm、10 mm锥长,其零色散点分别为 806 nm /2 456 nm和 637 nm /1 164 nm。8 mm锥微结构光纤在中心波长 800 nm、平均功率 0.45 W的超短脉冲作用下,产生了 378 nm~1 632 nm、 1777 nm~2 450 nm平坦度为 20 dB的超连续谱;当功率为 0.50 W时,10 mm锥微结构光纤位于 1 164 nm的零色散点限制了拉曼孤子及超连续谱的红移,但在 395 nm~475 nm形成谱宽为 80 nm峰,频率上转换效率达到 70.5%。
微结构光纤 拉锥 超连续谱 双零色散点 microsructure fiber tapering supercontinuum two zero dispersion wavelengths 
光电工程
2016, 43(3): 23
夏长明 1,2,*田洪春 1,2侯峙云 1,2刘建涛 1,2[ ... ]周桂耀 1,2
作者单位
摘要
1 华南师范大学信息光电子科技学院广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
2 广东高校特种功能光纤工程技术研究中心, 广东 广州 510006
采用掺杂粉末直拉棒工艺制备了一种小芯径的掺镱光子晶体光纤。以此光纤为增益介质,抽运波长为976 nm,实现了波长为1045 nm 激光连续输出。并研究了抽运功率与光纤长度对激光性能的影响。受限于光纤的小芯径尺寸,该光纤激光器系统激光输出功率最大仅为0.42 W,激光斜率效率仅为33%。实验结果表明,利用掺杂石英粉末直拉棒工艺制备的掺镱光子晶体光纤有望应用于高功率光纤激光器的研制。
光纤光学 掺镱光子晶体光纤 光纤激光器 非化学气相沉积法 掺杂粉末直拉棒工艺 
中国激光
2016, 43(2): 0205001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!