光电工程, 2016, 43 (3): 23, 网络出版: 2016-09-12  

双零色散点锥型微结构光纤的超连续谱

韩颖 1,2,*刘志宏 1,2毕新英 1,2周桂耀 1,2屈玉玮 1,2齐跃峰 1,2王伟 1,2
作者单位
1 燕山大学信息科学与工程学院,河北秦皇岛 066004
2 河北省特种光纤与光纤传感重点实验室,河北秦皇岛 066004
摘要
用“快速低温”法,在保持包层空气填充率不变的情况下,对实验室自制的微结构光纤进行了拉锥,得到了锥长分别为 8 mm、10 mm的锥形光纤。利用多极法模拟可知,拉锥前光纤在 1 129 nm具有单个零色散点,拉锥后光纤锥腰处出现双零色散点,对于 8 mm、10 mm锥长,其零色散点分别为 806 nm /2 456 nm和 637 nm /1 164 nm。8 mm锥微结构光纤在中心波长 800 nm、平均功率 0.45 W的超短脉冲作用下,产生了 378 nm~1 632 nm、 1777 nm~2 450 nm平坦度为 20 dB的超连续谱;当功率为 0.50 W时,10 mm锥微结构光纤位于 1 164 nm的零色散点限制了拉曼孤子及超连续谱的红移,但在 395 nm~475 nm形成谱宽为 80 nm峰,频率上转换效率达到 70.5%。
Abstract
By “fast and cold tapered technology”, a home-made Microstructure Fiber (MF) is tapered to 8 mm, 10 mm tapered length while keeping d/Λ unchanged. Numerical simulations by multi-pole method show that untapered MF has a single Zero Dispersion Wavelength (ZDW) at 1 129 nm, while after tapering an additional ZDW appears at tapered waist. The two ZDWs of 8 mm and 10 mm-tapered-MF locate at 806 nm/2 456 nm and 637 nm/1 164 nm, respectively. When pumped by ultrafast pulse with center wavelength at 800 nm and average energy of 0.45 W, 8 mm-tapered-MF generates supercontinuum at range of 378 nm~1 632 nm and 1 777 nm~2 450 nm with 20 dB flatness. In 10 mm-tapered-MF, redshift of Raman soliton and supercontinuum is hindered by its second ZDW at 1 164 nm. However, the blue shift efficiency of bump energy is enhanced. When pump power reaches 0.5 W, up to 70.5% of pump energy is unconverted to 395 nm~ 475 nm.
参考文献

[1] Buczynski R. Photonic crystal fibers [J]. Acta Physica Polonica A(S1094-4087),2004,106:141-167.

[2] Glass A M,DiGiovanni D J,Strasser T A,et al. Advances in fiber optics [J]. Bell Labs Technical Journal(S1089-7089),2000, 5(1):168-187.

[3] CHEN Haihuan,CHEN Zilun,ZHOU Xuanfeng,et al. Cascaded PCF tapers for flat broadband supercontinuum generation [J]. Chinese Optics Letters(S1671-7694),2012,10(12):120603-120603.

[4] Jones D J,Diddams S A,Ranka J K,et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science(S0036-8075),2000,288(5466):635-639.

[5] Hartl I,LI X D,Chudoba C,et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber [J]. Optics Letters(S0146-9592),2001,26(9):608-610.

[6] Steinmetz T,Wilken T,Araujo-Hauck C,et al. Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth [J]. Applied Physics B(S0946-2171),2009,96(2/3):251-256.

[7] Sobon G,Klimczak M,Sotor J,et al. Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1 560 nm [J]. Optical Materials Express(S2159-3930),2014,4(1):7-15.

[8] Klimczak M,Stepniewski G,Bookey H,et al. Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1 560 nm [J]. Optics Letters(S0146-9592),2013,38(22): 4679-4682.

[9] Roy S,Mondal K,Chaudhuri P R. Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence,dispersion,and supercontinuum generation properties [J]. Applied Optics(S1559-128X),2009,48(31): G106-G113.

[10] M.ller U,S.rensen S T,Larsen C,et al. Optimum PCF tapers for blue-enhanced supercontinuum sources [J]. Optical Fiber Technology(S1068-5200),2012,18(5):304-314.

[11] Hilligs.e K M,Andersen T,Paulsen H,et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths [J]. Optics Express(S1094-4246),2004,12(6):1045-1054.

[12] YAO Yuhong,Knox Wayne H. Speckle-free femtosecond red-green-blue (RGB) source from a fiber laser driven spectrally efficient two zero dispersion wavelength fiber source [J]. Optics Express(S1094-4246),2015,23(1):536-544.

[13] JIANG Tongxiao,WANG Guizhong,ZHANG Wei,et al. Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz [J]. Optics Letters(S0146-9592), 2013,38(4):443.

[14] Naji M,Murugkar S,Anis H. Determining optimum operating conditions of the polarization-maintaining fiber with two far-lying zero dispersion wavelengths for CARS microscopy [J]. Optics Express(S1094-4246),2014,22(9):10800-10814.

[15] Agrawal G P.非线性光纤光学原理及应用:二版 [M].贾东方,余震虹,谈斌,译 . 北京:电子工业出版社, 2010:6-7.

[16] Le S T,Prilepsky J E,Turitsyn S K. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers [J]. Optics Express(S1094-4246),2014,22(22):26720-26741.

[17] Wadsworth W,Witkowska A,Leon-Saval S,et al. Hole inflation and tapering of stock photonic crystal fibres [J]. Optics Express(S1094-4246),2005,13(17):6541-6549.

韩颖, 刘志宏, 毕新英, 周桂耀, 屈玉玮, 齐跃峰, 王伟. 双零色散点锥型微结构光纤的超连续谱[J]. 光电工程, 2016, 43(3): 23. HAN Ying, LIU Zhihong, BI Xinying, ZHOU Guiyao, QU Yuwei, QI Yuefeng, WANG Wei. [J]. Opto-Electronic Engineering, 2016, 43(3): 23.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!