光学学报, 2016, 36 (12): 1202001, 网络出版: 2020-05-15   

单腔原子芯片系统中高效率的四极磁阱转移 下载: 560次

High Efficiency Quadrupole Magnetic Trap Transport in Single Chamber Atom Chip System
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
利用两对部分重叠的磁光阱(MOT) 和转移线圈产生的可移动四极磁阱(QMT) 实现了87Rb冷原子从MOT中心向原子芯片的高效率输运。采取了线性增加转移线圈电流、同时保持MOT线圈电流不变的QMT移动方式, 磁阱的移动速度构型为类Blackman型。利用该QMT输运方案, 冷原子从MOT中心转移到原子芯片表面, 转移过程中冷原子温度升高约30μK, 原子转移效率高于90%。该系统可以为原子芯片干涉仪提供合适的冷原子源, 也可以用来研究原子与芯片表面的相互作用。
Abstract
With a movable quadrupole magnetic trap (QMT) generated by two pairs of partly-overlapped magneto-optical trap (MOT) and transfer coils, a highly efficient transport of cold 87Rb atoms to the atom chip surface is realized. By the QMT movable means of linearly increasing the current in the transfer coils but simultaneously keeping the current in the MOT coils constant, the velocity profile of the moving trap is Blackman-type-like. With this QMT movable scheme, the cold atoms are transferred to the atom chip surface from the MOT center. In the transfer process, the cold atom temperature is increased by about 30 μK, and the transfer efficiency is above 90%. This system provides an appropriate cold atoms source for the atom chip interferometer and also can be used to investigate the interaction between atom and chip surface.
参考文献

[1] Chuang H C, Huang C S, Chen H P, et al. The design, fabrication and characterization of a transparent atom chip[J]. Sensors, 2014, 14(6): 10292-10305.

[2] Huet L, Ammar M, Morvan E, et al. Experimental investigation of transparent silicon carbide for atom chips[J]. Applied Physics Letters, 2012, 100(12): 121114.

[3] Feenstra L, Andersson L M, Schmiedmayer J. Microtraps and atom chips: Toolboxes for cold atom physics[J]. General Relativity and Gravitation, 2004, 36(10): 2317-2329.

[4] Reichel J. Microchip traps and Bose-Einstein condensation[J]. Applied Physics B, 2002, 74(6): 469-487.

[5] Dekker N H, Lee C S, Lorent V V, et al. Guiding neutral atoms on a chip[J]. Physical Review Letters, 2000, 84(6): 1124-1127.

[6] H?nsel W, Reichel J, Hommelhoff P, et al. Magnetic conveyor belt for transporting and merging trapped atom clouds[J]. Physical Review Letters, 2001, 86(4): 608-611.

[7] Schumm T, Hofferberth S, Andersson L M, et al. Matter-wave interferometry in a double well on an atom chip[J]. Nature Physics, 2005, 1(1): 57-62.

[8] Reichel J, Hansell W, Hansch T W. Atomic micromanipulation with magnetic surface traps[J]. Physical Review Letters, 1999, 83(17): 3398-3401.

[9] Du S W, Oh E. Three-wire magnetic trap for direct forced evaporative cooling[J]. Physical Review A, 2009, 79(1): 013407.

[10] Hansel W, Hommelhoff P, Hansch T W, et al. Bose-Einstein condensation on a microelectronic chip[J]. Nature, 2001, 413(6855): 498-501.

[11] Ott H, Fortagh J, Schlotterbeck G, et al. Bose-Einstein condensation in a surface microtrap[J]. Physical Review Letters, 2001, 87(23): 230401.

[12] Straatsma C J, Ivory M K, Duggan J, et al. On-chip optical lattice for cold atom experiments[J]. Optics Letters, 2015, 40(14): 3368-3371.

[13] Rushton J A, Aldous M, Himsworth M D. Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology[J]. Review of Scientific Instruments, 2014, 85(12): 121501.

[14] Wang Y J, Anderson D Z, Bright V M, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate[J]. Physical Review Letters, 2005, 94(9): 090405.

[15] Muntinga H, Ahlers H, Krutzik M, et al. Interferometry with Bose-Einstein condensates in microgravity[J]. Physical Review Letters, 2013, 110(9): 093602.

[16] Maineult W, Deutsch C, Gibble K, et al. Spin waves and collisional frequency shifts of a trapped-atom clock[J]. Physical Review Letters, 2012, 109(2): 020407.

[17] 陈姝, 冯焱颖, 薛洪波, 等. 基于蒙特卡罗方法进行冷原子束模拟和参数优化[J]. 中国激光, 2014, 41(5): 0518001.

    Chen Shu, Feng Yanying, Xue Hongbo, et al. Monte Carlo method for simulation and parameter optimization cold atomic beam[J]. Chinese J Lasers, 2014, 41(5): 0518001.

[18] Myatt C J, Newbury N R, Ghrist R W, et al. Multiply loaded magneto-optical trap[J]. Optics Letters, 1996, 21(4): 290-292.

[19] Roberts K O, McKellar T, Fekete J, et al. Steerable optical tweezers for ultracold atom studies[J]. Optics Letters, 2014, 39(7): 2012-2015.

[20] Gustavson T L, Chikkatur A P, Leanhardt A E, et al. Transport of Bose-Einstein condensates with optical tweezers[J]. Physical Review Letters, 2002, 88(2): 020401.

[21] 周琦, 陆俊发, 潘小青, 等. 新颖操控冷原子/冷分子的组合三光学阱新方案及实验研究[J]. 光学学报, 2014, 34(4): 0402001.

    Zhou Qi, Lu Junfa, Pan Xiaoqing, et al. Theoretical and experimental study of a novel combinative triple-well optical trap for triple-species cold atoms or molecules[J]. Acta Optica Sinica, 2014, 34(4): 0402001.

[22] Schmid S, Thalhammer G, Winkler K, et al. Long distance transport of ultracold atoms using a 1D optical lattice[J]. New Journal of Physics, 2006, 8: 159.

[23] Kumar S, Sarkar S, Verma G, et al. Bose-Einstein condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap[J]. New Journal of Physics, 2015, 17(2): 023062.

[24] Lewandowski H J, Harber D M, Whitaker D L, et al. Simplified system for creating a Bose-Einstein condensate[J]. Journal of Low Temperature Physics, 2003, 132(516): 309-367.

[25] Greiner M, Bloch I, H?nsch T W, et al. Magnetic transport of trapped cold atoms over a large distance[J]. Physical Review A, 2001, 63(3): 031401.

[26] Gao K Y, Luo X Y, Jia F D, et al. Ultra-high efficiency magnetic transport of 87Rb atoms in a single chamber Bose-Einstein condensation apparatus[J]. Chinese Physics Letters, 2014, 31(6): 063701.

[27] Horikoshi M, Nakagawa K. Atom chip based fast production of Bose-Einstein condensate[J]. Applied Physics B, 2006, 82(3): 363-366.

[28] Han J S, Xu X P, Zhang H C, et al. Optimal transport of cold atoms by modulating the velocity of traps[J]. Chinese Physics B, 2013, 22(2): 023702.

[29] Chen D, Zhang H, Xu X, et al. Nonadiabatic transport of cold atoms in a magnetic quadrupole potential[J]. Applied Physics Letters, 2010, 96(13): 134103.

[30] Farkas D M, Hudek K M, Salim E A, et al. A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates[J]. Applied Physics Letters, 2010, 96(9): 093102.

[31] Jian B, van Wijngaarden W A. Double-loop microtrap for ultracold atoms[J]. Journal of the Optical Society of America B, 2013, 30(2): 238-243.

[32] Hommelhoff P, H?nsel W, Steinmetz T, et al. Transporting, splitting and merging of atomic ensemblesin a chip trap[J]. New Journal of Physics, 2005, 7: 3.

[33] 张鹏飞, 许忻平, 张海潮, 等. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用[J]. 物理学报, 2007, 56(6): 3205.

    Zhang Pengfei, Xu Xinping, Zhang Haichao, et al. UV light-induced atom desorption for magnetic trap in a single vacuum chamber[J]. Acta Physica Sinica, 2007, 56(6): 3205.

程俊, 许忻平, 张敬芳, 陈钰水, 张海潮, 王育竹. 单腔原子芯片系统中高效率的四极磁阱转移[J]. 光学学报, 2016, 36(12): 1202001. Cheng Jun, Xu Xinping, Zhang Jingfang, Chen Yushui, Zhang Haichao, Wang Yuzhu. High Efficiency Quadrupole Magnetic Trap Transport in Single Chamber Atom Chip System[J]. Acta Optica Sinica, 2016, 36(12): 1202001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!