激光与光电子学进展, 2014, 51 (9): 090005, 网络出版: 2014-08-20   

太赫兹参量振荡器研究进展 下载: 549次

Progress of Terahertz Parametric Oscillator
作者单位
1 天津大学精密仪器与光电子工程学院激光与光电子研究所, 光电信息技术科学教育部重点实验室, 天津 300072
2 亚利桑那大学光学科学中心, 美国亚利桑那州 85747
摘要
太赫兹(THz)波以其光谱和传输性能等方面的独特特性在基础学科研究、医学成像和无损检测等多领域具有重要的应用前景,其科学研究战略意义重大。根据THz 波参量振荡器(TPO)的结构,主要从产生THz 波常用的非线性晶体,内腔、外腔及腔增强结构,THz 波输出耦合方式,浅表面输出结构,抽运光参数对TPO 的影响和种子注入技术几个方面对国内外THz 参量振荡器的研究进展进行回顾。随着新材料和新结构的研究,TPO 将会在越来越多的领域中发挥作用。
Abstract
Terahertz (THz)-wave has brought huge application prospect to the study of basic disciplines, medical imaging and nondestructive testing, for its unique features in spectrum and transmission performance, and it has significant scientific strategic importance. The development process of THz-wave parametric oscillator (TPO) is mainly summarized from several aspects: nonlinear crystals used in THz generation, resonator structures including external cavity, intra-cavity and pump-enhanced cavity, THz wave output coupling schemes, surface-emitted structure, pump light parameters and injection seeding. With the development of new materials and new structures, TPO will play an important role in more fields.
参考文献

[1] 王瑞君, 王宏强, 庄钊文, 等. 太赫兹雷达技术研究进展[J]. 激光与光电子学进展, 2013, 50(4): 040001.

    Wang Ruijun, Wang Hongqiang, Zhuang Zhaowen, et al.. Research progress of terahertz radar technology[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040001.

[2] 李琦, 丁胜晖, 李运达, 等. 太赫兹数字全息成像的研究进展[J]. 激光与光电子学进展, 2012, 49(5): 050006.

    Li Qi, Ding Shenghui, Li Yunda, et al.. Advances in research on THz digital holographic imaging[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050006.

[3] 卢树华. 基于太赫兹光谱技术的爆炸物类危险品检测[J]. 激光与光电子学进展, 2012, 49(4): 040006.

    Lu Shuhua. Detection of explosives by terahertz spectroscopic techniques[J]. Laser & Optoelectronics Progress, 2012, 49(4): 040006.

[4] 李昕磊, 李飚. 实时太赫兹探测与成像技术新进展[J]. 激光与光电子学进展, 2012, 49(9): 090008.

    Li Xinlei, Li Biao. Review on progress of real-time THz sensing and imaging technology[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090008.

[5] 孙博, 姚建铨. 基于光学方法的太赫兹辐射源[J]. 中国激光, 2006, 33(10): 1349-1359.

    Sun Bo, Yao Jianquan. Generation of terahertz wave based on optical methods[J]. Chinese J Lasers, 2006, 33(10): 1349-1359.

[6] Kawase K, Shikata J, Imai K, et al.. Transform-limited, narrow-linewidth, terahertz-wave parametric generator[J]. Appl Phys Lett, 2001, 78(19): 2819-2821.

[7] 马成举, 陈延伟, 向军, 等. 太赫兹辐射产生技术进展[J]. 激光与光电子学进展, 2007, 44(4): 56-61.

    Ma Chengju, Chen Yanwei, Xiang Jun, et al.. Progress in generation of terahertz radiation[J]. Laser & Optoelectronics Progress, 2007, 44(4): 56-61.

[8] Vodopyanov K L, Hurlbut W C, Kozlov V G. Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing[J]. Appl Phys Lett, 2011, 99(4): 041104.

[9] Shi W, Ding Y J. Continuously tunable and coherent terahertz radiation by means of phase-matched differencefrequency generation in zinc germanium phosphide[J]. Appl Phys Lett, 2003, 83(5): 848-850.

[10] Ding Y J, Shi W. Widely-tunable, monochromatic, and high-power terahertz sources and their applications[J]. J Nonlinear Optical Physics & Materials, 2003, 12(04): 557-585.

[11] Kawase K, Hatanaka T, Takahashi H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Opt Lett, 2000, 25(23): 1714-1716.

[12] Bahoura M, Herman G S, Barnes N P, et al.. Terahertz wave source via difference-frequency mixing using cross-Reststrahlen band dispersion compensation phase matching: a material study[C]. SPIE, 2000, 3928: 132-140.

[13] Ding Y J, Zotova I B. Coherent and tunable terahertz oscillators, generators, and amplifiers[J]. J Nonlinear Optical Physics & Materials, 2002, 11(1): 75-97.

[14] Hayashi S, Nawata K, Sakai H, et al.. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser[J]. Opt Express, 2011, 20(3): 2881-2886.

[15] Yarborough J M, Sussman S S, Purhoff H E, et al.. Efficient, tunable optical emission from LiNbO3 without a resonator [J]. Appl Phys Lett, 1969, 15(3): 102-105.

[16] Johnson B C, Puthoff H E, Soohoo S, et al.. Power and linewidth of tunable stimulated far-infrared emission in LiNbO3 [J]. Appl Phys Lett, 1971, 18(5): 181-183.

[17] Piestrup M A, Fleming R N, Pantell R H. Continuously tunable submillimeter wave source[J]. Appl Phys Lett, 1975, 26(8): 418-421.

[18] Kawase K, Sato M, Taniuchi T, et al.. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler[J]. Appl Phys Lett, 1996, 68(18): 2483-2485.

[19] Ashkin A, Boyd G D, Dziedzic J M, et al.. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Appl Phys Lett, 1966, 9(1): 72-74.

[20] 仲跻国, 靳健, 吴仲康. 掺镁铌酸锂晶体的光折变测定[J]. 南开大学学报(自然科学版), 1980, (1): 59.

    Zhong Jiguo, Jin Jian, Wu Zhongkang. Measurement on photorefractive effect of MgO:LiNbO3[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 1980, (1): 59.

[21] 金婵, 李铭华, 刘劲松, 等. 掺镁铌酸锂晶体抗光损伤机理的研究[J]. 光子学报, 1994, 23(6): 530-534.

    Jin Chan, Li Minghua, Liu Jinsong, et al.. Study on mechanism of MgO:LiNbO3 resistance to light damage[J]. Acta Photonica Sinica, 1994, 23(6): 530-534.

[22] Armstrong J A, Bloembergen N, Ducuing J, et al.. Interactions between light waves in a nonlinear dielectric[J]. Phys Rev, 1962, 127(6): 1918-1939.

[23] Molter D, Theuer M, Beigang R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate[J]. Opt Express, 2009, 17(8): 6623-6628.

[24] Shikata J, Sato M, Taniuchi T, et al.. Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling[J]. Opt Lett, 1999, 24(4): 202-204.

[25] 李忠洋, 姚建铨, 徐德刚, 等. 铌酸锂晶体中参量振荡产生高功率可调谐太赫兹波的实验研究[J]. 中国激光, 2011, 38(4): 0411002.

    Li Zhongyang, Yao Jianquan, Xu Degang, et al.. Experimental investigation of high-power tunable THz-wave parametric oscillator based upon MgO:LiNbO3 crystal[J]. Chinese J Lasers, 2011, 38(4): 0411002.

[26] 刘磊, 李霄, 刘通, 等. 太赫兹波参量振荡器研究进展[J]. 激光与光电子学进展, 2012, 49(9): 090001.

    Liu Lei, Li Xiao, Liu Tong, et al.. Progress of terahertz wave parametric oscillator[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090001.

[27] Kawase K, Shikata J, Ito H. Terahertz wave parametric source[J]. J Phys D: Appl Phys, 2002, 35(3): R1-R14.

[28] Kawase K, Sato M, Nakamura K, et al.. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Appl Phys Lett, 1997, 71(6): 753-755.

[29] Kawase K, Shikata J, Minamide H, et al.. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator[J]. Appl Opt, 2001, 40(9): 1423-1426.

[30] Ikari T, Zhang X, Minamide H, et al.. THz-wave parametric oscillator with a surface-emitted configuration[J]. Opt Express, 2006, 14(4): 1604-1610.

[31] Avetisyan Y, Sasaki Y, Ito H. Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide[J]. Appl Phys B, 2001, 73(5-6): 511-514.

[32] Li Zhongyang, Yao Jianquan, Xu Degang, et al.. Output enhancement of a THz wave based on a surface-emitted THzwave parametric oscillator[J]. Chin Phys Lett, 2011, 28(11): 114201.

[33] Li Zhongyang, Yao Jianquan, Lü Da, et al.. High-power terahertz radiation based on a compact eudipleural THz-wave parametric oscillator[J]. Chin Phys Lett, 2011, 28(6): 064209.

[34] 张显斌, 施卫. 用短谐振腔结构优化THz 电磁波参量振荡器的输出特性[J]. 物理学报,2006, 55(10): 5237-5241.

    Zhang Xianbin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator[J]. Acta Physica Sinica, 2006, 55(10): 5237-5241.

[35] Wang Weitao, Zhang Xingyu, Wang Qingpu, et al.. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal[J]. Opt Lett, 2014, 39(4): 754-757.

[36] Walsh D, Stothard D J M, Edwards T J, et al.. Injection-seeded intracavity terahertz optical parametric oscillator[J]. J Opt Soc Am B, 2009, 26(6): 1196-1202.

[37] Edwards T, Walsh D, Spurr M, et al.. Compact source of continuously and widely-tunable terahertz radiation[J]. Opt Express, 2006, 14(4): 1582-1589.

[38] Yao J Q, Wang Y Y, Xu D G, et al.. High-energy, continuously tunable intracavity terahertz-wave parametric oscillator [C]. 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009. 1-2.

[39] Li Z Y, Li J, Bing P, et al.. Design and threshold analysis for a novel intracavity THz-wave parametric oscillator[J]. Infrared and Laser Engineering, 2012, 41(9): 2339-2345.

[40] Molter D, Theuer M, Beigang R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate[J]. Opt Express, 2009, 17(8): 6623-6628.

[41] Takida Y, Maeda S, Ohira T, et al.. Noncascading THz-wave parametric oscillator synchronously pumped by modelocked picosecond Ti:sapphire laser in doubly-resonant external cavity[J]. Opt Commun, 2011, 284(19): 4663-4666.

[42] Takida Y, Ohira T, Tadokoro Y, et al.. Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity[J]. IEEE J Quant Electron, 2013, 19(1): 8500307.

[43] Sun B, Liu J, Li E. Investigation of a novel frequency-tuning method for terahertz-wave parametric oscillators[J]. Opt Express, 2008, 16(25): 20817-20825.

[44] Brosnan S J, Byer R L. Optical parametric oscillator threshold and linewidth studies[J]. IEEE J Quant Electron, 1979, 15(6): 415-431.

[45] Li Zhongyang, Yao Jianquan, Zhu Zhengnian, et al.. Threshold analysis of a THz-wave parametric oscillator[J]. Chin Phys Lett, 2010, 27(6): 064202.

[46] Xu Degang, Zhang Hao, Jiang Hao, et al.. High energy terahertz parametric oscillator based on surface-emitted configuration[J]. Chin Phys Lett, 2013, 30(2): 024212.

[47] Sun Bo, Liu Jinsong, Li Enbang, et al.. Investigation of pump-wavelength dependence of terahertz-wave parametric oscillator based on LiNbO3[J]. Chinese Phys B, 2009, 18(7): 2846-2852.

[48] Shikata J, Kawase K, Karino K, et al.. Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals[J]. IEEE Trans on Microwave Theory and Techniques, 2000, 48(4): 653-661.

[49] Imai K, Kawase K, Shikata J, et al.. Injection-seeded terahertz-wave parametric oscillator[J]. Appl Phys Lett, 2001, 78(8): 1026-1028.

[50] 郭少锋, 林文雄, 黎全, 等. 种子注入式单纵单横电光调Q激光器[J]. 中国激光, 2007, 33(12): 1585-1589.

    Guo Shaofeng, Lin Wenxiong, Li Quan, et al.. Single axial and transverse mode electro-optic Q-switched laser based on injection-seeding technique and self filtering unstable resonator[J]. Chinese J Lasers, 2007, 33(12): 1585-1589.

[51] Walsh D, Stothard D J M, Edwards T J, et al.. Injection-seeded intracavity terahertz optical parametric oscillator[J]. J Opt Soc Am B, 2009, 26(6): 1196-1202.

[52] Imai K, Sugawara S, Shikata J, et al.. The effect of injection seeding on terahertz parametric oscillation[J]. Electronics and Communications in Japan (Part II: Electronics), 2003, 86(1): 26-35.

李惟帆, 郭宝山, 史伟. 太赫兹参量振荡器研究进展[J]. 激光与光电子学进展, 2014, 51(9): 090005. Li Weifan, Guo Baoshan, Shi Wei. Progress of Terahertz Parametric Oscillator[J]. Laser & Optoelectronics Progress, 2014, 51(9): 090005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!