Journal of Innovative Optical Health Sciences, 2016, 9 (4): 1642003, Published Online: Dec. 27, 2018  

Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles

Author Affiliations
1 Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
2 Department of Radiation Oncology The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
Abstract
Gold nanoparticles (AuNPs) could serve as potential radiotherapy sensitizers because of their exceptional biocompatibility and high-Z material nature; however, since in vitro and in vivo behaviors of AuNPs are determined not only by their particle size but also by their surface chemistries, whether surface ligands can affect their radiosensitization has seldom been investigated in the radiosensitization of AuNPs. By conducting head-to-head comparison on radiosensitization of two kinds of ultrasmall (~2 nm) near-infrared (NIR) emitting AuNPs that are coated with zwitterionic glutathione and neutral polyethylene glycol (PEG) ligands, respectively, we found that zwitterionic glutathione coated AuNPs (GS-AuNPs) can reduce survival rates of MCF-7 cells under irradiation of clinically used megavoltage photon beam at low dosage of ~2:25 Gy. On the other hand, PEG-AuNPs can serve as a radiation-protecting agent and enabled MCF-7 cells more resistant to the irradiation, clearly indicating the key role of surface chemistry in radiosensitization of AuNPs. More detailed studies suggested that such difference was independent of cellular uptake and its efficiency, but might be related to the ligand-induced difference in photoelectron generation and/or interactions between AuNPs and X-ray triggered reactive oxygen species (ROS).
References

[1] J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, H. M. Smilowitz, "Radiotherapy enhancement with gold nanoparticles," J. Pharm. Pharmacol. 60, 977–986 (2008).

[2] D. Katz, E. Ito, F.-F. Liu, On the path to seeking novel radiosensitizers, Int. J. Radiat. Oncol. Biol. Phys. 73, 988–996 (2009).

[3] B. E. Lally, G. A. Geiger, S. Kridel, A. E. Arcury- Quandt, M. E. Robbins, N. D. Kock, K. Wheeler, P. Peddi, A. Georgakilas, G. D. Kao, Identification, biological evaluation of a novel, potent small molecule radiation sensitizer via an unbiased screen of a chemical library, Cancer Res. 67, 8791–8799 (2007).

[4] P. M. D. Gara, N. I. Garabano, M. J. L. Portoles, M. S. Moreno, D. Dodat, O. R. Casas, M. C. Gonzalez, M. L. Kotler, ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions, in glioma C6 cells, J. Nanopart. Res. 14, 1–13 (2012).

[5] M.-H. Lin, T.-S. Hsu, P.-M. Yang, M.-Y. Tsai, T.-P. Perng, L.-Y. Lin, "Comparison of organic, inorganic germanium compounds in cellular radiosensitivity, preparation of germanium nanoparticles as a radiosensitizer," Int. J. Radiat. Biol. 85, 214– 226 (2009).

[6] X. Wang, S. Goeb, Z. Ji, N. A. Pogulaichenko, F. N. Castellano, "Homogeneous photocatalytic hydrogen production using π-conjugated platinum (II) arylacetylide sensitizers," Inorg. Chem. 50, 705– 707 (2011).

[7] M. Candelaria, A. Garcia-Arias, L. Cetina, A. Due as-Gonzalez, "Radiosensitizers in cervical cancer. Cisplatin and beyond," Radiat. Oncol. 1, 15 (2006).

[8] P. Juzenas, W. Chen, Y.-P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, "Quantum dots, nanoparticles for photodynamic, radiation therapies of cancer," Adv. Drug Deliv. Rev. 60, 1600–1614 (2008).

[9] D. B. Chithrani, S. Jelveh, F. Jalali, M. van Prooijen, C. Allen, R. G. Bristow, R. P. Hill, D. A. Jaffray, "Gold nanoparticles as radiation sensitizers in cancer therapy," Radiat. Res. 173, 719–728 (2010).

[10] X.-D. Zhang, D. Wu, X. Shen, J. Chen, Y.-M. Sun, P.-X. Liu, X.-J. Liang, "Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy," Biomaterials 33, 6408–6419 (2012).

[11] E. Brun, L. Sanche, C. Sicard-Roselli, "Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution," Colloids Surf. B, Biointerfaces 72, 128–134 (2009).

[12] R. R. Arvizo, O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya, J. D. Robertson, V. M. Rotello, Y. Prakash, P. Mukherjee, "Effect of nanoparticle surface charge at the plasma membrane and beyond," Nano Lett. 10, 2543–2548 (2010).

[13] A. Verma, F. Stellacci, "Effect of surface properties on nanoparticle–cell interactions," Small 6, 12–21 (2010).

[14] J. Liu, M. Yu, X. Ning, C. Zhou, S. Yang, J. Zheng, "PEGylation and Zwitterionization: Pros, Cons in the Renal Clearance, Tumor Targeting of Near- IREmitting Gold Nanoparticles," Angew. Chem. 125, 12804–12808 (2013).

[15] M. Yu, J. Liu, X. Ning, J. Zheng, "Highcontrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores," Angew. Chem. Int. Ed. 54, 15434–15438 (2015).

[16] J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning, J. Zheng, "Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention, fast normal tissue clearance," J. Am. Chem. Soc. 135, 4978–4981 (2013).

[17] X.-D. Zhang, Z. Luo, J. Chen, S. Song, X. Yuan, X. Shen, H. Wang, Y. Sun, K. Gao, L. Zhang et al., "Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake, high renal clearance," Sci. Rep. 5, 8669 (2015).

[18] S. Jain, J. A. Coulter, A. R. Hounsell, K. T. Butterworth, S. J. McMahon, W. B. Hyland, M. F. Muir, G. R. Dickson, K. M. Prise, F. J. Currell, "Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies," Int. J. Radiat. Oncol. Biol. Phys. 79, 531–539 (2011).

[19] W. N. Rahman, S. Corde, N. Yagi, S. A. A. Aziz, N. Annabell, M. Geso, "Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams," Int. J. Nanomed. 9, 2459 (2014).

[20] T. M. Phillips, W. H. McBride, F. Pajonk, "The response of CD24-/low/CD44t breast cancer–initiating cells to radiation," J. Nat. Cancer Inst. 98, 1777–1785 (2006).

[21] F. O. Silva, M. S. Carvalho, R. Mendon a, W. A. Macedo, K. Balzuweit, P. Reiss, M. A. Schiavon, "Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots," Nanoscale Res. Lett. 7, 1–10 (2012).

[22] X. Fu, Y. Wang, N. Wu, L. Gui, Y. Tang, "Surface modification of small platinum nanoclusters with alkylamine, alkylthiol: An XPS study on the influence of organic ligands on the Pt 4f binding energies of small platinum nanoclusters," J. Colloid Interface Sci. 243, 326–330 (2001).

[23] M. Shi, H. S. Kwon, Z. Peng, A. Elder, H. Yang, "Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles," ACS Nano 6, 2157–2164 (2012).

[24] H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, "Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment," Nano Lett. 15, 2249–2256 (2015).

Xingya Jiang, Bujie Du, Mengxiao Yu, Xun Jia, Jie Zheng. Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1642003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!