量子电子学报, 2020, 37 (5): 580, 网络出版: 2020-11-06   

多普勒测风激光雷达的基本原理与技术进展

Basic principle and technical progress of Doppler wind lidar
储玉飞 1,2,*刘东 1,2王珍珠 1,2吴德成 1邓迁 1,2李路 1,2庄鹏 1,2王英俭 1,2
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
引用该论文

储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580.

储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580.

参考文献

[1] Fujii T D, Fukuchi T. Laser Remote Sensing [M]. Taylor & Francis, 2005: 338-342.

[2] Jia Xiaodong. Development of 1.55 μm Coherent Wind Lidar Prototype (1.55 μm 相干测风激光雷达样机的研制) [D]. Hefei: Doctorial Dissertation of University of Science and Technology of China, 2015 (in Chinese).

[3] Li Mingzhuo. Experimental Research on 1.55 μm Optical Heterodyne Receiving in Coherent Wind Laser Radar (相干激光测风雷达中 1.55 μm 光外差接收实验研究) [D]. Harbin: Master Thesis of Harbin Institute of Technology, 2007 (in Chinese).

[4] Huffaker R M, Hardesty R M. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems [J]. Proceedings of the IEEE, 1996, 84(2): 181-204.

[5] Huffaker R M. Laser Doppler detection systems for gas velocity measurement [J]. Applied Optics, 1970, 9(5): 1026.

[6] Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler system for detection of aircraft trailing vortices [J]. Proceedings of the IEEE, 1970, 58(3): 322-326.

[7] Brashears M R, Hallock J N. The measurement of wind shear and wake vortices by laser Doppler velocimetry [C]. th Conference on Aerospace and Aeronautical Meteorology, 1977.

[8] Schwiesow R L, Cupp R E, Sinclair P C, et al. Waterspout velocity measurements by airborne Doppler lidar [J]. Journal of Applied Meteorology, 2010, 20(4): 341-348.

[9] Intrieri J M, Brewer W A, Eberhard W L. Performance of the Mini-MOPA, CO2 Doppler, cloud lidar at CART [C]. ARM Science Team Meeting, 1997: 347-349.

[10] Pearson B G, Collier C G. A pulsed coherent CO2 lidar for boundary-layer meteorology [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(559): 2703-2721.

[11] Kane T J, Kozlovsky W J, Byer R L. Coherent laser radar at 1.06 μm using Nd: YAG lasers [J]. Optics Letters, 1987, 12(4): 239-241.

[12] Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd: YAG coherent lidar system [J]. Optics Letters, 1989, 14(15): 776-778.

[13] Hawley J G, Targ R, Henderson S W, et al. Coherent launch-site atmospheric wind sounder: Theory and experiment [J]. Applied Optics, 1993, 32(24): 4557-4568.

[14] Hawley J G, Targ R, Bruner R S, et al. Performance of a 1μm, 1 joule coherent launch site atmospheric wind sounder [C]. Proceedings of SPIE, 1992, 1694: 110-120.

[15] Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers [J]. Optics Letters, 1991, 16(10): 773-775.

[16] Wulfmeyer V, Randall M, Brewer A, et al. 2 μm Doppler lidar transmitter with high frequency stability and low chirp [J]. Optics Letters, 2000, 25(17): 1228-1230.

[17] Grund C J, Banta R M, George J L, et al. High-resolution Doppler lidar for boundary layer and cloud research [J]. Journal of Atmospheric Oceanic Technology, 2001, 18(3): 376-393.

[18] Phillips M W, Henderson S W, Poling M, et al. Coherent LIDAR development for Doppler wind measurement from the International Space Sation [C]. Proceedings of SPIE, 2001, 4153: 376-384.

[19] Kameyama S, Yanagisawa T, Ando T, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation from late 1990s to 2013 [C]. Proceedings of the 17th Coherent Laser Radar Conference, Barcelona, Spain, 2013: 12-13.

[20] Engelmann R, Wandinger U, Ansmann A, et al. Lidar observations of the vertical aerosol flux in the planetary boundary layer [J]. Journal of Atmospheric Oceanic Technology, 2008, 25(8): 1296-1306.

[21] Bluestein H B, French M M, Houser J B, et al. A summary of data collected during VORTEX-2 by MWR-05XP/TWOLF, UMass X-Pol, and the UMass W-band radar [C]. th Conference on Severe Local Storms, Denver, Colorado, 2010.

[22] Hannon S, Barr K, Novotny J, et al. Large scale wind resource mapping using a state-of-the-art 3D scanning lidar [C]. Wind Power 2008, Houston, Texas, USA, 2008.

[23] Hannon S M, Vetorino S R, Pelk J V. Next generation Doppler lidar sensor at 1.6 μm [C]. Proceedings of the 14th Coherent Laser Radar Conference, Snowmass, Colorado, USA, 2007: 59-62.

[24] Kameyama S, Sakimura T, Watanabe Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler lidar which has the laser amplifier using Er, Yb: glass planar waveguide [C]. Proceedings of SPIE, 2012, 8526: 85260E.

[25] Zhong Zhiqing, Sun Dongsong, Wang Bangxin, et al. Doppler wind lidar based on Fabry-Perot etalon [J]. Infrared and Laser Engineering (红外与激光工程), 2006, 35(6): 687-690 (in Chinese).

[26] Li Dongmei, Zheng Yongchao, Pan Jiangyan, et al. Index system of coherence Doppler wind lidar [J]. Optical Technique (光学技术), 2010, 36(6): 880-884 (in Chinese).

[27] Liu J Q, Zhu X P, Zhou J, et al. Development of a coherent Doppler lidar to measure atmosphere windshear [C]. Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), IEEE, 2011: 843-845.

[28] Liu J Q, Zhu X L, Zhu X P, et al. Development of all-fiber coherent Doppler lidar to measure atmosphere wind speed [C]. th International Laser Radar Conference, Porto Heli, Peloponnesus, Greece, 2012: 199-202.

[29] Diao W F, Zhang X, Liu J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers [J]. Chinese Optics Letters, 2014, 12(7): 072801.

[30] Liu J Q, Zhu X P, Diao W F, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles [C]. th International Laser Radar Conference, New York City, New York, USA, 2015.

[31] Wu S H, Yin J P, Liu B Y, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar [C]. Proceedings of SPIE, 2014, 9262: 92620H.

[32] http://www.darsunlaser.com/a/news/91.html.

[33] Bu Zhichao, Guo Pan, Chen Siying, et al. Optimization analysis of telescope aperture and truncation factor of coherent LIDAR [J]. Infrared and Laser Engineering (红外与激光工程), 2013, 43(3): 694-699 (in Chinese).

[34] Ke Tianmei, Tan Tu, Hou Zaihong, et al. Research on technology of 1.55 μm all-fiber coherent wind lidar [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2018, 13(5): 48-53 (in Chinese).

[35] Liu B, Peng Z X. Design of a non-scanning lidar for wind velocity and wind velocity and direction measurement [C]. th International Laser Radar Conference, New York City, New York, USA, 2015.

[36] Foot C J. Atomic Physics (Oxford Master Series in Atomic, Optical and Laser Physics) [M]. Oxford University Press, 2013.

[37] Brown A, Thomas E L, Foord R, et al. Measurements on a distant smoke plume with a CO2 laser velocimeter [J]. Journal of Physics D: Applied Physics, 1978, 11(2): 137.

[38] Reitebuch O. Atmospheric Physics [M]. Berlin Heidelberg: Springer, 2012: 487-507.

[39] Zhang Riwei, Sun Xuejin, Yan Wei, et al. Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer [J]. Acta Physica Sinica (物理学报), 2014, 63(14): 140703 (in Chinese).

[40] Tian Xiaoming, Liu Dong, Xu Jiwei, et al. Review of lidar technology for atmosphere monitoring [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2018, 13(5): 4011(in Chinese).

[41] Liu Z S, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079-7086.

[42] Shen Fahua, Yue Bing, Xia Haiyun, et al. Method of wind velocity inversion for wind lidar based on Fizeau fringe technique [J]. Infrared and Laser Engineering (红外与激光工程), 2007, 36(6): 834-837 (in Chinese).

[43] Shen Fahua, Sun Dongsong, Chen Min, et al. Analysis on the factors influencing measure precision of wind lidar based on Fizeau interferometer [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2006, 1(4): 53-58 (in Chinese).

[44] Tan Linqiu, Hua Dengxin, Wang Li, et al. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar [J]. Acta Physica Sinica (物理学报), 2014, 63(22): 191-199 (in Chinese).

[45] Peng Z, Wang B, Tan M, et al. Design and simulation of 532 nm Rayleigh-Mie Doppler wind lidar system [C]. Seminar on Novel Optoelectronic Detection Technology and Application, 2018: 293.

[46] Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence [J]. Applied Optics, 2011, 50(6): 842-851.

[47] Straume-Lindner A G, Elfving A, Wernham D, et al. ESA’s spaceborne lidar mission ADM-Aeolus; Recent achievements and preparations for launch [J]. EPJ Web of Conferences, 2016, 119: 01001.

[48] Reitebuch O, Lemmerz C, Nagel E, et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: Instrument design and comparison to satellite instrument [J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(12): 2501-2515.

[49] Anders E. Aeolus laser shines light on wind [OL]. ESA, 2018, URL: http://m.esa.int/Our-Activities/Observing-the-Earth/Aeolus/Aeolus-laser- shines-light-on-wind.

[50] Xia H, Shangguan M, Wang C, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer [J]. Optics Letters, 2016, 41(22): 5218.

[51] Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector [J]. Optics Letters, 2017, 42(18): 3541.

[52] Liu Yanwen, Sun Xuejin, Zhang Chunliang, et al. The algorithm of frequency discrimination of incoherent Doppler wind lidar [J]. Laser & Infrared (激光与红外), 2018, 48(10): 1204-1213 (in Chinese).

[53] Zhou Yongsheng, Ma Xunpeng, Zhao Yiming, et al. Frequency estimation of the weak signal of the coherent wind lidar [J]. Infrared and Laser Engineering (红外与激光工程), 2018, 47(3): 0306002 (in Chinese).

[54] Zhang Yinchao, Li Lili, Guo Pan, et al. Simulation research on coherent wind lidar bandpass sampling method [J]. Transaction of Beijing Institute of Technology (北京理工大学学报), 2018, 38(2): 211-215 (in Chinese).

[55] Cheng Xing, Li Zhen, Zhuang Zibo et al. A small scale wind shear detection algorithm of modified F-factor for wind-profiling lidar [J]. Optics and Precision Engineering (光学 精密工程), 2018, 26(4): 927-935 (in Chinese).

[56] Liu Yanwen, Sun Xuejin, Zhang Chunliang, et al. The algorithm of frequency discrimination of incoherent Doppler wind lidar [J]. Laser & Infrared (激光与红外), 2018, 48(10): 14-23 (in Chinese).

[57] Wang Guining, Liu Bingyi, Feng Changzhong, et al. Data quality control method for VAD wind field retrieval based on coherent wind lidar [J]. Infrared and Laser Engineering (红外与激光工程), 2018, 47(2): 023002 (in Chinese).

储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580. 储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!