激光与光电子学进展, 2017, 54 (7): 070101, 网络出版: 2017-07-05  

中分辨率成像光谱仪的大气温度廓线和地面探空数据同化 下载: 508次

Data Assimilation Between Atmospheric Temperature Profile of Moderate Resolution Imaging Spectroradiometer and Ground Sounding Data
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
摘要
大气温度廓线是气候、气象以及大气辐射传输计算中的重要参数。利用中分辨率成像光谱仪(MODIS)的测量数据反演的产品在扫描带上约每间隔500 m×500 m即存在一个温度廓线数据,垂直空间分辨率约为1 km。基于最优插值法,使用地面探空站点的月均数据对MODIS反演的大气廓线进行校正。在有地面探空站点的地区,将校正后的结果与当天实时地面探空探测的廓线进行对比,得到的平均误差和均方根误差均减小了10%以上。在没有地面探空站点的地区,采用周围几个站点月均数据的加权平均对MODIS数据进行校正,将校正结果与当天实时释放的探空气球数据进行对比,发现平均误差和均方根误差均大幅减小。
Abstract
Atmospheric temperature profile is an important parameter for climate, meteorology and atmospheric radiative transfer calculation. Temperature profile data of products inversed from data measured by moderate resolution imaging spectroradiometer (MODIS) exists on scanning strip per 500 m×500 m with the vertical resolution of 1 km. Based on the optimal interpolation method, the monthly averaging data of ground sounding site is used to correct the MODIS-inversed atmospheric profiles. In the area with ground sounding sites, the corrected results are compared with the profiles obtained by real-time ground sounding detection of a day, and it is shown that the average error and the root mean square error decrease more than 10%. In the area without ground sounding sites, we use the weighted average data of several sites around the target area to correct the MODIS data, and compare the correction results with real-time balloons data of the day. We find that the average error and the root mean square error greatly decrease.
参考文献

[1] Maccherone B. National aeronautics and space administration. Specification[EB/OL]. (2002-5-4)[2017-6-1]. https://modis.gsfc.nasa.gov/about/specifications.php.

[2] 孙 刚, 翁宁泉, 肖黎明, 等. 大气温度分布特性及对折射率结构常数的影响[J]. 光学学报, 2004, 24(5): 592-596.

    Sun Gang, Weng Ningquan, Xiao Liming, et al. Profile and character of atmospheric temperature[J]. Acta Optica Sinica, 2004, 24(5): 592-596.

[3] 伯广宇, 刘 博, 钟志庆, 等.探测大气温度和气溶胶的瑞利-拉曼-米氏散射激光雷达[J]. 光学学报, 2010, 30(1): 19-25.

    Bo Guangyu, Liu Bo, Zhong Zhiqing, et al. Rayleigh-Raman-Mie lidar for atmospheric temperature and aerosol profiles measurement[J]. Acta Optica Sinica, 2010, 30(1): 19-25.

[4] 王玉峰, 高 飞, 朱承炫, 等. 对流层高度大气温度、湿度和气溶胶的拉曼激光雷达系统[J]. 光学学报, 2015, 35(3): 0328004.

    Wang Yufeng, Gao Fei, Zhu Chengxuan, et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 2015, 35(3): 0328004.

[5] Luo L, Robock A, Mitchell K E, et al. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 8843.

[6] Rodell M, Houser P R, Jambor U E A, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.

[7] Gao S H, Wu Z, Yang B. Assimilation of GMS-5 satellite winds using nudging method with MM5[J]. Chinese Journal of Oceanology and Limnology, 2006, 24(3): 215-224.

[8] 陆其峰, 张文江, 张 鹏, 等. 基于区域ATOVS数据同化的2008中国南方低温雨雪冰冻灾害的暴雪监测研究[J]. 中国科学: 地球科学, 2010, 40(3): 380-392.

    Lu Qifeng, Zhang Wenjiang, Zhang Peng, et al. Monitoring 2008 cold surge and frozen disasters snowstorm in south China based on regional ATOVS date[J]. Scientia Sinica Terrae, 2010, 40(3): 380-392.

[9] 王 毅, 余宙文. 卫星高度计波高数据同化对西北太平洋海浪数值预报的影响评估[J]. 海洋学报, 2009, 31(6): 1-8.

    Wang Yi, Yu Zhouwen. Validation of impact of assimilation of altimeter satellite significant wave height on wave forecast in the northwest pacific[J]. Acta Oceanologica Sinica, 2009, 31(6): 1-8.

[10] 石良武, 林立宇, 王四春, 等. 基于数据同化和差分进化算法的图像融合[J]. 光子学报, 2010, 39(9): 1688-1692.

    Shi Liangwu, Lin Liyu, Wang Sichun, et al. Image fusion based on data assimilation and differential evolution algorithm[J]. Acta Photonica Sinica, 2010, 39(9): 1688-1692.

[11] Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994, 7(6): 929-948.

[12] Gandin L S. On optimal interpolation and extrapolation of meteorological fields[J]. Trudy GGO, 1960, 114: 75-89.

[13] 邹晓蕾. 资料同化理论和应用[M]. 北京: 气象出版社, 2009: 12.

    Zou Xiaolei. Data assimilation theory and application[M]. Beijing: China Meteorological Press, 2009: 12.

[14] 马寨璞. 海洋流场数据同化方法与应用的研究[D]. 杭州: 浙江大学, 2002: 1-156.

    Ma Zhaipu. Study of data assimilation method and its application to sea flow field[D]. Hangzhou: Zhejiang University, 2002: 1-156.

[15] 秦琦冰, 魏合理. 基于历年探空数据构建实时大气参数廓线的方法研究[J]. 大气与环境光学学报, 2013, 8(3): 1-8.

    Qin Qibing, Wei Heli. Construction of real-time atmospheric parameter profiles based on average radiosonde profiles and surface meteological datas[J]. Journal of Atmospheric and Environment Optics, 2013, 8(3): 1-8.

蔡熠, 徐青山. 中分辨率成像光谱仪的大气温度廓线和地面探空数据同化[J]. 激光与光电子学进展, 2017, 54(7): 070101. Cai Yi, Xu Qingshan. Data Assimilation Between Atmospheric Temperature Profile of Moderate Resolution Imaging Spectroradiometer and Ground Sounding Data[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!