中国激光, 2012, 39 (8): 0802009, 网络出版: 2012-07-09   

一维光子带隙光子晶体激光腔的特性分析

Characteristic Analysis on Photonic Crystal Laser Cavity with One-Dimensional Photonic Bandgap
作者单位
1 四川大学电子信息学院, 四川 成都 610064
2 华北光电技术研究所, 北京 100015
摘要
利用平面波展开法与时域有限差分法分析计算了一维光子带隙光子晶体腔的特性。得到了品质因子Q为2.2×106,模体积V为0.278(λ/n)3的一维带隙光子晶体腔。分析了渐变区、腔镜子区及缺陷区对腔品质因子Q和模式体积V的影响。引入渐变区、选择适量周期数及一定缺陷区长度都可以提高腔性能。该结论为设计优化一维光子带隙光子晶体腔提供了有效的理论分析依据与指导。
Abstract
Photonic crystal laser cavity with one-dimensional (1D) photonic bandgap is investigated by plane wave expansion method and finite-difference time-domain method. The photonic crystal laser cavity with quality factor Q of 2.2×106 and mode volume V of 0.278(λ/n)3 is achieved. The relationships between tapered section, mirror section, defect section, and Q are analyzed. The introduction of tapered section, choosing proper periodic number and suitable defect length can improve the performance of the cavity. These conclusions provide an effective theoretical analysis and guidance on optimization of photonic crystal cavity with 1D photonic bandgap.
参考文献

[1] O. Painter, R. K. Lee, A. Scherer et al.. Two-dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(5421): 1819~1821

[2] K. Nozaki, S. Kita, T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser[J]. Opt. Express, 2007, 15(12): 7506~7514

[3] J. K. Hwang, H. Y. Ryu, D. S. Song et al.. Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm[J]. IEEE Photon. Technol. Lett., 2000, 12(10): 1295~1297

[4] M. Notomi, H. Suzuki, T. Tamamura. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps[J]. Appl. Phys. Lett., 2001, 78(10): 1325

[5] B. H. Ahn, J. H. Kang, M. K. Kim et al.. One-dimensional parabolic-beam photonic crystal laser[J]. Opt. Express, 2010, 18(6): 5654~5660

[6] Q. Quan, I. B. Burgess, S. K. Y. Tang et al.. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Opt. Express, 2011, 19(22): 22191~22197

[7] I. W. Frank, P. B. Deotare, M. W. McCutcheon et al.. Programmable photonic crystal nanobeam cavities[J]. Opt. Express, 2010, 18(8): 8705~8712

[8] Y. Zhang, M. Khan, Y. Huang et al.. Photonic crystal nanobeam lasers[J]. Appl. Phys. Lett., 2010, 97(5): 051104

[9] E. Kuramochi, H. Taniyama, T. Tanabe et al.. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings[J]. Opt. Express, 2010, 18(15): 15859~15869

[10] M. Notomi, E. Kuramochi, H. Taniyama. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Opt. Express, 2008, 16(15): 11095~11102

[11] J. S. Foresi, P. R. Villeneuve, J. Ferrera et al.. Photonic-bandgap microcavities in optical waveguides[J]. Nature, 1997, 390(6656): 143~145

[12] S. Shi, C. Chen, D. W. Prather. Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers[J]. J. Opt. Soc. Am. A, 2004, 21(9): 1769~1775

[13] R. Luebbers, F. P. Hunsberger, K. S. Kunz et al.. A frequency-dependent finite-difference time-domain formulation for dispersive materials[J]. IEEE Transactions on, Electromagnetic Compatibility, 1990, 32(3): 222~227

[14] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

[15] T. Baba, D. Sano. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature[J]. J. Sel. Top. Quantum Electron., 2003, 9(5): 1340~1346

[16] P. Lalanne, J. P. Hugonin. Bloch-wave engineering for high-Q, small-V microcavities[J]. IEEE J. Quantum Electron., 2003, 39(11): 1430~1438

[17] D. Peyrade, E. Silberstein, P. Lalanne et al.. Short Bragg mirrors with adiabatic modal conversion[J]. Appl. Phys. Lett., 2002, 81(5): 829~831

[18] S. G. Johnson, S. Fan, P. R. Villeneuve et al.. Guided modes in photonic crystal slabs[J]. Phys. Rev. B, 1999, 60(8): 5751~5758

[19] 李凤, 陈四海, 罗欢 等. 聚合物自写入光波导的时域有限差分模拟[J]. 光学学报, 2011, 31(10): 1023002

    Li Feng, Chen Sihai, Luo Huan et al.. Finite-difference time-domain simulation of polymer self-written waveguide[J]. Acta Optica Sinica, 2011, 31(10): 1023002

[20] 陈琛, 杨甬英, 王道档 等. 基于时域有限差分方法的点衍射波前误差分析[J]. 中国激光, 2011, 38(9): 0908003

    Chen Chen, Yang Yongying, Wang Daodang et al.. Analysis of point-diffraction wavefront error based on finite difference time domain method[J]. Chinese J. Lasers, 2011, 38(9): 0908003

冯琛, 冯国英, 周昊, 陈念江, 周寿桓. 一维光子带隙光子晶体激光腔的特性分析[J]. 中国激光, 2012, 39(8): 0802009. Feng Chen, Feng Guoying, Zhou Hao, Chen Nianjiang, Zhou Shouhuan. Characteristic Analysis on Photonic Crystal Laser Cavity with One-Dimensional Photonic Bandgap[J]. Chinese Journal of Lasers, 2012, 39(8): 0802009.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!