红外与激光工程, 2016, 45 (5): 0504005, 网络出版: 2016-06-12   

红外脉冲相位热像检测效率提高方法

Method for improving detection efficiency using infrared pulse phase thermography
作者单位
火箭军工程大学 602教研室, 陕西 西安 710025
摘要
为提高脉冲相位热像法(PPT)温度序列相位的计算速度和检测效率, 对传统的傅里叶变换(FFT)进行优化, 提出了适用于PPT的相位快速计算方法, 使运算速度提高了1.9~12.4倍。为确定相位算法中温度序列的最佳采样长度和频率分量, 结合热扩散深度公式提出了最佳采样长度估算公式。对铝合金试件和钢材料试件进行了脉冲相位热波检测, 当缺陷检测效果最佳时, 热图序列最佳采样长度分别为1.1 s和3.9 s, 基频相位差有最佳的缺陷分辨能力。结果表明: 该算法显著提高了相位计算速度, 量化的最佳采样长度估算公式能直接确定热图采样长度, 减少了操作的主观性和参数设置的随机性, 有效提高了脉冲相位热像检测效率。
Abstract
In order to improve the phase calculation speed and detection efficiency of Pulse Phase Thermography(PPT), a fast phase algorithm optimized from Fast Fourier Transform(FFT) was proposed, with which the calculation speed could be increased by 1.9-12.4 times. To solve the optimal sampling length of thermal image sequence and frequency ratio, the calculation method for optimal sampling length was proposed based on the heat diffusion formula. Experiment was carried out on aluminium and iron specimens. Results show that the optimal sampling length is 1.1 s and 3.9 s for aluminium and iron specimens respectively and the phase difference at fundamental frequency has the best capability to distinguish defects. The calculation speed is evidently improved by the proposed fast algorithm and the optimal sampling length can be directly calculated by the improved numerical formula. Operation subjectivity and random settings of parameters can be avoided and the detection efficiency of pulse phase thermography can be improved.
参考文献

[1] Montanini R, Freni F. Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography[J]. Composites: Part A, 2012(43): 2075-2082.

[2] Feng Chi, Hua Xiang. Applications of the infrared thermal wave technology in thermal barrier coating testing[J]. Applied Science and Tchnology, 2015, 42(1): 15-18. (in Chinese)

[3] Tang Qingju, Wang Yang, Liu Junyan, et al. Detecting of defects in heat-resistant alloy coating structure plates using pulsed infrared thermography[J]. Infrared and Laser Engineering, 2013, 42(7): 1685-1690. (in Chinese)

[4] Zhang Jinyu, Meng Xiangbing, Yang Zhengwei, et al. Numerical simulation and analysis of lock-in thermography for thickness measurement of coating[J]. Infrared and Laser Engineering, 2015, 44(1): 6-11. (in Chinese)

[5] Li Yin, Zhang Wei, Yang Zhengwei, et al. Low-velocity impact damage characterization of carbon fiber reinforced polymer(CFRP) using infrared thermography[J]. Infrared Physics & Technology, 2016, 76: 91-102.

[6] Tao Shengjie, Yang Zhengwei, Zhang Wei, et al. Research on measurement of coating thickness based on thermal image time characteristic[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1810-1816. (in Chinese)

[7] Masashi Ishikawa, Hiroshi Hatta, Yoshio Habuka, et al. Detecting deeper defects using pulse phase thermography[J]. Infrared Physics & Technology, 2013, 57: 42-49.

[8] Waugh Rachael C, Dulieu-Barton Janice M, Quinn Simon. Defect detection using pulse phase thermography-repeatability and reliability of data[J]. Key Engineering Materials, 2013, 569-570: 1164-1169.

[9] Henrik Schmutzler, Marko Alder, Nils Kosmann, et al. Degradation monitoring of impact damaged carbon fibre reinforced polymers under fatigue loading with pulse phase thermography[J]. Composites: Part B, 2014, 59: 221-229.

[10] Bu Chiwu, Tang Qingju, Liu Junyan, et al. Inspection on CFRP sheet with subsurface defects using pulsed thermographic technique [J]. Infrared Physics & Technology, 2014, 65: 117-121.

[11] Waugh R C, Dulieu-Barton J M, Quinn S. Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies[J]. NDT & E International, 2014, 66: 52-66.

[12] Yu Jiajie, Wu Naiming, Zeng Zhi, et al. FRP depth measurement based on pulsed phase thermography[J]. Infrared and Laser Engineering, 2012, 41(7): 1893-1898. (in Chinese)

[13] Liu Junyan, Liu Xun, Wang Yang. Technology of linear frequency modulation infrared thermal-wave imaging for nondestructive testing[J]. Infrared and Laser Engineering, 2012, 41(6): 1416-1422. (in Chinese)

[14] Yuxia Duan, Stefanie Huebner, Ulf Hassler, et al. Quantitative evaluation of optical lock-in and pulsed thermography for aluminum foam material[J]. Infrared Physics & Technology, 2013, 60: 275-280.

陶胜杰, 杨正伟, 田干, 张炜. 红外脉冲相位热像检测效率提高方法[J]. 红外与激光工程, 2016, 45(5): 0504005. Tao Shengjie, Yang Zhengwei, Tian Gan, Zhang Wei. Method for improving detection efficiency using infrared pulse phase thermography[J]. Infrared and Laser Engineering, 2016, 45(5): 0504005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!