激光与光电子学进展, 2011, 48 (7): 071406, 网络出版: 2011-06-21   

钠导星激光器研究进展 下载: 756次

Research Progress of Sodium Guide Star Lasers
作者单位
中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
摘要
介绍了钠导星激光器在自适应光学系统中的应用价值,分析了其指标特点及技术难点。按产生方式的不同,分别从染料激光器、固体激光器、光纤激光器3个方面阐述了钠导星激光器的发展历程及最新进展。染料钠导星激光器是最早获得工程应用的激光器,但由于体积较大、稳定性及可靠性较差等缺点逐渐遭到淘汰。固体钠导星激光器又分为和频(SFG)、受激拉曼散射(SRS)及光参量放大器(OPA)3种类型,其中和频方式应用最为广泛,科学家们已根据需要开发出宏微脉冲体制、连续单频体制及连续锁模体制的激光器,并已研制出平均功率50 W的商用产品。光纤钠导星激光器是近几年迅猛发展起来的一类新型激光器,尤其是基于拉曼光纤放大器倍频的连续单频钠导星激光器,输出功率已突破了50 W。
Abstract
Sodium guide star lasers have a great application in the adaptive optics systems. The characteristic parameters and technique difficulties of the lasers are analyzed. According to the generation methods, the sodium guide star lasers can be divided into three types: dye lasers, solid lasers and fiber lasers. The development history and the state of the art of them are expatiated. Dye lasers applied in engineering firstly have been washed out because of its big scale, low stability and dependability, and so on. Solid lasers include sum-frequency generation (SFG), stimulated Raman scattering (SRS) and optical parameter amplifier (OPA). SFG lasers are used mostly and developed into macro-micro pulse lasers, continuous single frequency lasers and continuous mode-locked lasers by scientists for different requirements. The commercial SFG lasers with 50 W average power have been produced recently. The fiber sodium guide star lasers as a novel type have been developed rapidly in recent years. Especially, the continuous single frequency sodium guide star lasers based on the Raman fiber amplifier and the second harmonious generation have exceeded 50 W average power.
参考文献

[1] Erez N. Ribak. Laser guide star projection for large telescopes[C]. SPIE, 2006, 6272: 62724E

[2] Richard Joyce, Corinne Boyer, Larry Daggert et al.. The laser guide star facility for the thirty meter telescope[C]. SPIE, 2006, 6272: 62721H

[3] P. D. Hillman, J. D. Drummord, C. A. Denman et al.. Simple model, including recoil, for the brightness of sodium star created from CW single frequency fasors and comparison to measurements[C]. SPIE, 2008, 7015: 701SOL

[4] R. Holzlhner, S.M.Rochester, D.Bonaccini et al.. Optimization of cw sodium guide star efficiency[J]. Astronomy & Astrophysics, 2010, 510(A20):1~14

[5] Byron M.Welsh, Chester S. Gardner. Effects of nonlinear resonant absorption on sodium laser guide star[C]. SPIE, 1989, 1114: 203~214

[6] Peter W. Milonni, John M. Telle, Paul D. Hillman. Photon return from a mesospheric sodium guidestar versus excitation laser characteristics[C]. Couference on Lasers and Electro-Optics, 1998. 452

[7] John M. Telle, Peter W. Milonni, Paul D. Hillman. Comparison of pump-laser characteristics for producing a mesospheric sodium guidestar for adaptive optical systems on large aperture telescopes[C]. SPIE, 1998, 3264: 37~42

[8] Edward Kibblewhite. Calculation of returns from sodium beacons for different types of laser[C]. SPIE, 2008, 7015: 70150M

[9] Herbert Friedman, Kenneth Avicola, Horst Bissinger et al.. Laser guide star measurements at Lawrence Livermore National Laboratory[C]. SPIE, 1993, 1920: 52~60

[10] Herbert W. Friedman. Laser system design for the generation of a sodium-layer laser guide star[C]. SPIE, 1993, 1859: 251~262

[11] Kenneth Avicola, James Brasc, James Morris et al.. Sodium laser guide star system at Lawrence Livermore National Laboratory: system description and experimental results[C]. SPIE, 1994, 2201: 326~341

[12] C. E. Max, D. T. Gavel, S. S. Olivier et al.. Issues in the design and optimization of adaptive optics and guide stars for the Keck Telescopes[C]. SPIE, 1994, 2201: 189~200

[13] Herbert Friedman, Gaylen Erbert, Thomas Kuklo et al.. Sodium beacon laser system for the lick observatory[C]. SPIE, 1995, 2534: 150~160

[14] Andreas Quirrenbach, Wolfgang Hackenberg, Hans-Christoph Holstenberg et al.. The sodium laser guide star system of ALFA[C]. SPIE, 1997, 3126: 35~43

[15] S. Rabien, R. Davies, W. Hackenberg et al.. Beam quality and polarization analysis of the ALFA-Laser at Calar Alto and influence on brightness and size of the laser guide star[C]. SPIE, 1999, 3782: 368~377

[16] D. J. Butler, R. I. Davies, H. Fews et al.. Calar Alto ALFA and the sodium laser guide star in astronomy[C]. SPIE, 1999, 3762: 184~193

[17] S. Rabien, R. I. Davies, T. Ott et al.. PARSEC, the laser for the VLT[C]. SPIE, 2002, 4494: 325~335

[18] S. Rabien, R. I. Davies, T. Ott et al.. Design of PARSEC, the VLT laser[C]. SPIE, 2002, 4839: 393~401

[19] Richard Davies, Thomas Ott, Jianlang Li et al.. Operational Issues for PARSEC, the VLT Laser[C]. SPIE, 2003, 4839: 402~411

[20] D. Bonaccini, E. Allaert, C. Araujo et al.. The VLT laser guide star facility[C]. SPIE, 2003, 4839: 381~392

[21] S. Rabien, R. I. Davies, T. Ott et al.. Test performance of the PARSEC laser system[C]. SPIE, 2004, 5490: 981~988

[22] Thomas H.Jeys. Development of a mesospheric sodium laser beacon for atmospheric adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4(2): 133~150

[23] 吕彦飞, 檀慧明, 钱龙生. 激光二极管阵列抽运NdYAG腔内双波长运转589 nm和频激光器[J]. 中国激光, 2006, 33(4): 438~442

    Lü Yanfei, Tan Huiming, Qian Longsheng. Laser diode array pumped NdYAG dual wavelength laser with intracavity sum-frequency mixing at 589 nm[J]. Chinese J. Lasers, 2006, 33(4): 438~442

[24] 耿爱丛, 薄勇, 毕勇 等. V型腔腔内和频产生3 W连续波589 nm黄光激光器[J]. 物理学报, 2006, 55(10): 5227~5230

    Geng Aicong, Bo Yong, Bi Yong et al.. A 3 W continuous-wave 589 nm yellow laser based on the intracavity sum frequency generation in a V-shaped cavity[J]. Acta Physica Sinica, 2006, 55(10): 5227~5230

[25] Bo Yong, Geng Aicong, Lu Yuanfu et al.. A 4.8-W M2=4.6 continuous-wave intracavity sum-frequency diode-pumped solid-state yellow laser[J]. Chin. Phys. Lett., 2006, 23(6): 1494~1497

[26] 梁兴波, 苑利钢, 姜东升 等. 10.5 W准连续波589 nm黄光激光器[J]. 激光与红外, 2008, 38(9): 876~878

    Liang Xingbo, Yuan Ligang, Jiang Dongsheng et al.. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser & Infrared, 2008, 38(9): 876~878

[27] 刘东, 鲁燕华, 马毅 等. 二极管抽运全固态589 nm脉冲激光器[J]. 强激光与粒子束, 2008, 20(10): 1625~1628

    Liu Dong, Lu Yanhua, Ma Yi et al.. Diode pumped all-solid-state pulsed 589 nm laser[J]. High Power Laser and Particle Beams, 2008, 20(10): 1625~1628

[28] 鲁燕华, 刘东, 张雷 等. 全固态窄线宽钠导星激光器[J]. 中国激光, 2009, 36(7): 1848~1851

    Lu Yanhua, Liu Dong, Zhang Lei et al.. All-solid-state narrow linewidth sodium guidestar laser[J]. Chinese J. Lasers, 2009, 36(7): 1848~1851

[29] Yuanfu Lu, Shiyong Xie, Yong Bo et al.. Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state NdYAG ring lasers[J]. Opt. Comm., 2009, 282(17): 3573~3576

[30] 鲁燕华, 张雷, 马毅 等. 高效率PPSLT准相位匹配和频钠导星激光器[J]. 光学学报, 2010, 30(8): 2306~2310

    Lu Yanhua, Zhang Lei, Ma Yi et al.. Sodium guidestar laser based on high-efficiency PPSLT quasi-phase-matched sum frequency generation[J]. Acta Optica Sinaca, 2010, 30(8): 2306~2310

[31] Edward J. Kibblewhite, Fang Shi. Design and field tests of an 8 watt sum-frequency laser for adaptive optics[C]. SPIE, 1998, 3353: 300~309

[32] Viswa Velur, Edward Kibblewhite, Richard Dekany et al.. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[C]. SPIE, 2004, 5490: 1033~1040

[33] R. Dekany. Palomar Laser Guide Star Status[C]. UCLA Lake Arrowhead Conference, 2004. 3~11

[34] Richard Dekany, Viswa Velur, Hal Petrie et al.. Laser guide star adaptive optics on the 5.1 meter telescope at Palomar observatory[J]. Amos Technical Conference Proceedings, 2005.

[35] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26(4): 507~513

[36] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. 50 W CW single frequency 589 nm FASOR[C]. OSA Trends in Optics and Photonics, Advanced Solid-State Photonics, 2005, 85: 698~702

[37] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. Realization of a 50 watt facility-class sodium guidestar pump laser[C]. SPIE, 2005, 5707: 46~49

[38] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. The starfire optical range sodium guidestar FASOR[C]. Proceedings of the twenty-first annual solid state and diode technology review, 2008. 784~827

[39] R. W. P. Drever, J. L. Hall, F. V. Kowalski. Laser phaser and frequency stabilization using an optical resonator[J]. Appl. Phys. B, 1983, 31(2): 97~105

[40] Allen J. Tracy, Allen K. Hankla, Camilo Lopez et al.. High-power solid-state sodium beacon laser guidestar for the Gemini North Observatory[C]. SPIE, 2004, 5490: 998~1009

[41] Allen K. Hankla, Jarett Bartholomew, Ken Groff et al.. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South telescopes[C]. SPIE, 2006, 6272: 62721G

[42] Ian Lee, Munib Jalali, Neil Vanasse et al.. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[C]. SPIE, 2008, 7015: 70150N

[43] Nicholas Sawruk, Ian Lee, Munib Jalali et al.. System overview of 30 W and 55 W sodium guide star laser systems[C]. SPIE, 2010, 7736: 77361Y

[44] 王志超, 杜晨林, 阮双琛. 全固态黄光激光器研究进展[J]. 激光与光电子学进展, 2008, 45(1): 29~36

    Wang Zhichao, Du Chenlin, Ruan Shuangchen. Research progress of all-solid-state yellow lasers[J]. Laser & Optoelectronics Progress, 2008, 45(1): 29~36

[45] 刘波, 张行愚, 王青圃 等. LD抽运NdYVO4自喇曼倍频黄光激光器[J]. 光子学报, 2007, 36(10): 1777~1779

    Liu Bo, Zhang Xingyu, Wang Qingpu et al.. Diode-pumped intracavity frequency-doubled NdYVO4 self-Raman yellow laser[J]. Acta Photonica Sinica, 2007, 36(10): 1777~1779

[46] 王正平, 胡大伟, 张怀金 等. 外腔式BaWO4拉曼激光器[J]. 红外与激光工程, 2009, 38(4): 683~686

    Wang Zhengping, Hu Dawei, Zhang Huaijin et al.. External resonator BaWO4 crystal Raman laser[J]. Infrared and Laser Engineering, 2009, 38(4): 683~686

[47] 胡大伟, 王正平, 张怀金 等. 外腔型YVO4拉曼激光器[J]. 光学精密工程, 2009, 17(5): 975~979

    Hu Dawei, Wang Zhengping, Zhang Huaijin et al.. External resonator YVO4 crystal Raman laser[J]. Optics and Precision Engineering, 2009, 17(5): 975~979

[48] 杜晨林, 王志超, 阮双琛. LD泵浦NdYVO4自拉曼1176 nm激光器[J]. 深圳大学学报理工版, 2008, 25(4): 418~421

    Du Chenlin, Wang Zhichao, Ruan Shuangchen. LD-pumped NdYVO4 self Raman laser at 1176 nm[J]. J. Shenzhen University Science and Engineering, 2008, 25(4): 418~421

[49] Malte Duering, Vesselin Kolev, B. L. Davies. Generation of tuneable 589 nm radiation as a Na guide star source using an optical parametric amplifier[J]. Opt. Express, 2009, 17(2): 437~446

[50] D. M. Pennington, R. Beach, J. Dawson et al.. Compact fiber laser approach to generating 589 nm laser guide stars[C]. Conference on Lasers and Eletro-Optics, 2003. 730

[51] D. M. Pennington, J. W. Dawson, A. Drobshoff et al.. Compact fiber laser for 589 nm laser guide stars generation[C]. Conference on Lasers and Eletro-Optics, 2005

[52] Jay W. Davson, Alex D. Drobshoff, Raymond J. Beach et al.. Multi-watt 589 nm fiber laser source[C]. SPIE, 2006, 6102: 61021F

[53] D. M. Pennington, J. W. Dawson, R. J. Beach et al.. Compact fiber laser for 589 nm laser guide star generation[C]. Conference on Lasers and Eletro-Optics, 2005, 532

[54] Sharma.1.52 W frequency-doubled fiber based continuous wave orange laser radiation at 590 nm[J]. Rev. Laser Eng., 2005, 33(2): 130~131

[55] Georgiev, V. P. Gapontser, A. G. Dronv et al.. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Opt. Express, 2005, 13(18): 6772~6776

[56] Luke R. Taylor, Yan Feng, D. B. Calia et al.. Multi-watt 589 nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO[J]. SPIE, 2006, 6272: 627249

[57] Luke Taylor, Yan Feng, D. B. Calia. High power narrowband 589 nm frequency doubled fibre laser source[J]. Opt. Express, 2009, 17(17): 14687~14693

[58] Yan Feng, Luke R. Taylor, D.B.Calia. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Opt. Express, 2009, 17(21): 19021~19026

[59] Y. Feng, L. R. Taylor, D. B. Calia et al.. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm[R]. Presented at Frontiers in Optics, San Diego, 2009, PDPA4

[60] D. B. Calia, Yan Feng, W. Hackenberg et al.. Laser development for sodium laser guide stars at ESO[J]. Telescopes and Instrumentation, 2010, 139: 12~19

[61] Yan Feng, Luke R. Taylor, D. B. Calia. 150 W highly-efficient Raman fiber laser[J]. Opt. Express, 2009, 17(26): 23678~23683

[62] Luke R. Taylor, Yan Feng, D. B. Calia. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Opt. Express, 2010, 18(8): 8540~8555

[63] Wallance R.Clements, Wilhelm Kaenders. High-power guidestar lasers are ready for next-generaion AO astronomy[J]. Laser Focus World. 2010, 46(6): 27~33

[64] T. Justin Bronder, Harold Miller, Jonathan Stohs et al.. AFRL advanced electric lasers branch: construction and upgrade of a 50-watt facility-class sodium guidestar pump laser[C]. Proceedings of the advanced Maui Optical and Space Surveillance Technologies Conference, 2009: E59

鲁燕华, 黄园芳, 张雷, 张凯, 唐淳, 王卫民, 马毅. 钠导星激光器研究进展[J]. 激光与光电子学进展, 2011, 48(7): 071406. Lu Yanhua, Huang Yuanfang, Zhang Lei, Zhang Kai, Tang Chun, Wang Weimin, Ma Yi. Research Progress of Sodium Guide Star Lasers[J]. Laser & Optoelectronics Progress, 2011, 48(7): 071406.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!