Advanced Photonics, 2020, 2 (3): 036005, Published Online: Jun. 3, 2020   

Frequency-domain diagonal extension imaging Download: 936次

Author Affiliations
1 Peking University, College of Engineering, Department of Biomedical Engineering, Beijing, China
2 Southern University of Science and Technology China, Department of Biomedical Engineering, Shenzhen, Guangdong, China
3 Beijing Institute of Collaborative Innovation (BICI), Beijing, China
4 Tsinghua University, Department of Automation, Beijing, China
5 University of Technology Sydney, Faculty of Science, Institute for Biomedical Materials & Devices (IBMD), Ultimo, Australia
6 Peking University, School of Physics, Beijing, China
7 Peking University, School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), Beijing, China
8 Peking University People’s Hospital Breast Center, Beijing, China
Copy Citation Text

Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, Peng Xi. Frequency-domain diagonal extension imaging[J]. Advanced Photonics, 2020, 2(3): 036005.

References

[1] Y. Hiraoka, J. W. Sedat, D. A. Agard. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science, 1987, 238: 36-41.

[2] D. Li, et al.. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 2015, 349(6251): aab3500.

[3] X. Huang, et al.. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 2018, 36: 451-459.

[4] A. Lal, et al.. A frequency domain sim reconstruction algorithm using reduced number of images. IEEE Trans. Image Process., 2018, 27: 4555-4570.

[5] K. Zhanghao, et al.. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun., 2019, 10: 4694.

[6] D. Dan, et al.. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep., 2013, 3: 1116.

[7] M. Müller, et al.. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 2016, 7: 10980.

[8] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 50-63.

[9] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 2013, 7: 739-745.

[10] L.-H. Yeh, et al.. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express, 2015, 23(26): 33214-33240.

[11] X. Cui, et al.. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(31): 10670-10675.

[12] G. Stybayeva, et al.. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal. Chem., 2010, 82: 3736-3744.

[13] Z. Zhang, et al.. Mask-modulated lensless imaging with multi-angle illuminations. APL Photonics, 2018, 3: 060803.

[14] Y. Wu, A. Ozcan. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods, 2018, 136: 4-16.

[15] M. Lee, O. Yaglidere, A. Ozcan. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express, 2011, 2: 2721-2730.

[16] W. Bishara, et al.. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip, 2011, 11(7): 1276-1279.

[17] O. Mudanyali, et al.. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip, 2010, 10(11): 1417-1428.

[18] G. Biener, et al.. Combined reflection and transmission microscope for telemedicine applications in field settings. Lab Chip, 2011, 11(16): 2738-2743.

[19] Y.-C. Wu, et al.. Air quality monitoring using mobile microscopy and machine learning. Light Sci. Appl., 2017, 6(9): e17046.

[20] W. Bishara, et al.. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express, 2010, 18(11): 11181-11191.

[21] G. Zheng, et al.. The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. U.S.A., 2011, 108(41): 16889-16894.

[22] S. O. Isikman, W. Bishara, A. Ozcan. Lensfree on-chip tomographic microscopy employing multi-angle illumination and pixel super-resolution. J. Visualized Exp., 2012(66): e4161.

[23] A. Greenbaum, A. Ozcan. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express, 2012, 20(3): 3129-3143.

[24] W. Luo, et al.. Pixel super-resolution using wavelength scanning. Light Sci. Appl., 2016, 5(4): e16060.

[25] A. F. Coskun, et al.. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst, 2011, 136(17): 3512-3518.

[26] W. Luo, et al.. Synthetic aperture-based on-chip microscopy. Light Sci. Appl., 2015, 4(3): e261.

[27] M. Rostykus, M. Rossi, C. Moser. Compact lensless subpixel resolution large field of view microscope. Opt. Lett., 2018, 43(8): 1654-1657.

[28] E. McLeod, A. Ozcan. Unconventional methods of imaging: computational microscopy and compact implementations. Rep. Prog. Phys., 2016, 79: 076001.

[29] J.Pawley, Ed., Handbook of Biological Confocal Microscopy, Springer, Boston, Massachusetts (2010).

[30] M. Guizar-Sicairos, S. T. Thurman, J. R. Fienup. Efficient subpixel image registration algorithms. Opt. Lett., 2008, 33: 156-158.

[31] T. Latychevskaia, H.-W. Fink. Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl. Opt., 2015, 54: 2424-2434.

[32] T. Latychevskaia, H.-W. Fink. Solution to the twin image problem in holography. Phys. Rev. Lett., 2007, 98(23): 233901.

[33] W. Zhang, et al.. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 2018, 121(9): 093902.

Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, Peng Xi. Frequency-domain diagonal extension imaging[J]. Advanced Photonics, 2020, 2(3): 036005.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!