光学学报, 2016, 36 (9): 0911001, 网络出版: 2016-09-09   

基于混合散斑图的压缩计算鬼成像方法研究 下载: 518次

Hybrid Speckle-Pattern Compressive Computational Ghost Imaging
周成 1,2,3,*黄贺艳 1刘兵 1,2宋立军 1,2
作者单位
1 长春大学理学院, 吉林 长春 130022
2 长春大学材料设计与量子模拟吉林省高校重点实验室, 吉林 长春 130022
3 长春理工大学理学院, 吉林 长春 130022
摘要
提出一种基于混合散斑图的压缩计算鬼成像方法。通过对不同分辨率尺度组成的复杂物体进行自动识别,检测出物体中较大和较小分辨率区域,根据识别区域生成由不同大小尺寸散斑组成的混合散斑图进行探测,结合压缩感知对恢复图像进行处理。通过理论分析和数值仿真发现,与传统计算鬼成像方法相比,该方法克服了散斑大小选取不适当对恢复图像质量的影响,显著提高了恢复图像的衬噪比和可见度,有效降低了均方误差。该方法在提高成像质量的同时减少采样时间,有利于进一步推动计算鬼成像技术的实用化。
Abstract
A method of the hybrid speckle-pattern compressive computational ghost imaging scheme is proposed. The scheme detects the larger and smaller resolution areas of the object via identifying complex object composed of different resolution scales automatically. The hybrid speckle pattern composed of different sizes of speckles is generated according to the identify areas. The compressive sensing techniques are combined to process the reconstructed image. Theoretical analysis and numerical simulation show that compared with the traditional computational ghost imaging, this scheme overcomes the influence of inappropriate selection of speckle sizes on the quality of reconstructed image, enhances the image contrast-to-noise ratio and visibility significantly, mean square error effectively. The scheme improves the image quality while reducing the sampling time, which further facilitate the practical application of computational ghost imaging.
参考文献

[1] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6): 061802.

[2] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Phys Rev A, 2009, 79(5): 053840.

[3] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Phys Rev A, 1995, 52(5): R3429.

[4] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Phys Rev Lett, 2002, 89(11): 113601.

[5] Zhang M, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Phys Rev A, 2007, 75(2): 021803.

[6] Chen X H, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Opt Lett, 2009, 34(5): 695-697.

[7] Luo C L, Xu H, Cheng J. High-resolution ghost imaging experiments with cosh-Gaussian modulated incoherent sources[J]. J Opt Soc Am A, 2015, 32(3): 482-485.

[8] Luo C L, Cheng J, Chen A X, et al. Computational ghost imaging with higher-order cosh-Gaussian modulated incoherent sources in atmospheric turbulence[J]. Opt Commun, 2015, 352: 155-160.

[9] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

[10] 金浩强, 石剑虹, 彭进业, 等. 基于投影仪的“街角成像”和穿透散射介质成像[J]. 光学学报, 2014 34(5): 0511006.

    Jin Haoqiang, Shi Jianhong, Peng Jinye, et al. Looking around corners and through turbid media with projector[J]. Acta Optica Sinica, 2014, 34(5): 0511006.

[11] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015, 5.

[12] 唐文哲, 曹正文, 石剑虹, 等. 基于数字微镜器件的“后视”关联成像[J]. 光学学报, 2015, 35(5): 0511004.

    Tang Wenzhe, Cao Zhengwen, Shi Jianhong, et al. Back-side correlation imaging with digital micro mirror[J]. Acta Optica Sinica, 2015, 35(5): 0511004.

[13] Li H G, Zhang D J, Zhao Q L, et al. Influence of detector response speed on the contrast-to-noise ratio of reflective ghost imaging[J]. Opt Commun, 2015, 355: 558-561.

[14] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction[J]. Opt Express, 2010, 18(6): 5562-5573.

[15] Chan K W C, O’Sullivan M N, Boyd R W. High-order thermal ghost imaging[J]. Opt Lett, 2009, 34(21): 3343-3345.

[16] Chen M, Li E, Han S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints[J]. Appl Opt, 2014, 53(13): 2924-2928.

[17] 韩申生, 龚文林, 陈明亮, 等. 基于稀疏和冗余表象的鬼成像雷达研究进展[J]. 红外与激光工程, 2015, 44(9): 2547-2555.

    Han Shensheng, Gong Wenlin, Chen Mingliang, et al. Research progress of GISC lidar[J]. Infrared and Laser Engineering, 2015, 44(9): 2547-2555.

[18] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl Phys Lett, 2009, 95(13): 131110.

[19] 陆海明, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002.

    Lu Haiming, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.

[20] Katkovnik V, Astola J. Compressive sensing computational ghost imaging[J]. J Opt Soc Am A, 2012, 29(8): 1556-1567.

[21] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl Phys Lett, 2012, 101(14): 141123.

[22] Erkmen B I. Computational ghost imaging for remote sensing[J]. J Opt Soc Am A, 2012, 29(5): 782-789.

[23] Gong W, Bo Z, Li E, et al. Experimental investigation of the quality of ghost imaging via sparsity constraints[J]. Appl Opt, 2013, 52(15): 3510-3515.

[24] 张旭苹, 汪家其, 张益昕, 等. 大尺度三维几何尺寸立体视觉测量系统实现[J]. 光学学报, 2012, 32(3): 0315002.

    Zhang Xuping, Wang Jiaqi, Zhang Yixin, et al. Large-scale three-dimensional stereo vision geometric measurement system[J]. Acta Optica Sinica, 2012, 32(3): 0315002.

[25] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6): 679-698.

[26] Zerom P, Shi Z, O’Sullivan M N, et al. Thermal ghost imaging with averaged speckle patterns[J]. Phys Rev A, 2012, 86(6): 063817.

[27] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[28] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

[29] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Math, 2008, 346(9): 589-592.

周成, 黄贺艳, 刘兵, 宋立军. 基于混合散斑图的压缩计算鬼成像方法研究[J]. 光学学报, 2016, 36(9): 0911001. Zhou Cheng, Huang Heyan, Liu Bing, Song Lijun. Hybrid Speckle-Pattern Compressive Computational Ghost Imaging[J]. Acta Optica Sinica, 2016, 36(9): 0911001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!