作者单位
摘要
1 中国科学院 上海光学精密机械研究所,上海市全固态激光器与应用技术重点实验室,上海 201800
2 中国科学院大学,北京 100049
从衍射光学元件的基本原理出发,围绕连续波和脉冲波两大应用领域,综述了国内外基于衍射光学元件实现共孔径相干合成的研究进展。在国内,上海光学精密机械研究所分别实现了连续光和脉冲光的合成,连续光实现了206 W的输出功率,光束质量1.38,合束效率29.6%;脉冲光实现了峰值功率1.02 kW,重复频率2.2 MHz的ns级脉冲相干合成光束,合束效率61%。在国外,连续光方面实现了5 kW量级的合成光输出,合束效率82%;脉冲光方面实现了平均功率150 mW,重复频率100 MHz的fs级脉冲相干合成光束,合束效率83.4%。最后对基于衍射光学元件的激光相干合成技术的未来发展做出了展望,相信在不久的将来,基于衍射光学元件的相干合成技术会不断发展,逐渐突破技术瓶颈,从而为更多的应用领域奠定坚实基础。
激光光学 衍射光学元件 相干合成 光纤激光器 相位锁定 laser optics diffractive optical element coherent beam combining fiber laser phase locking 
强激光与粒子束
2023, 35(4): 041002
沈辉 1,3张磊 2,3李秋瑞 1陈晓龙 1[ ... ]周军 1,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室,上海 201800
2 中国科学院上海光学精密机械研究所强激光材料重点实验室,上海 201800
3 中国科学院大学材料与光电研究中心,北京 100049
中国激光
2022, 49(11): 1116001
王汉斌 1,3杨依枫 1袁志军 1咸昱桥 1,2[ ... ]周军 1,*
作者单位
摘要
1 中国科学院 上海光学精密机械研究所,上海市全固态激光器与应用技术重点实验室,上海 201800
2 中国科学院大学 材料科学与光电工程中心,北京 100049
3 哈尔滨工业大学 物理学院,哈尔滨 150006
4 华中科技大学 光学与电子信息学院,武汉 430074
受热效应、光学损伤与非线性效应等因素的限制,单纤的功率提高困难。因此通过光学元件将多束激光进行合束的光束合成技术应运而生。光谱合束方案具有结构简单,合束光束质量好等优点,逐渐成为了合束技术发展的主流。简要介绍了光纤激光光谱合束的几种常见合束方案,对比分析了几种合束技术的优缺点。对光谱合束中存在的光栅热畸变问题,从理论研究和实验研究两个方面进行了针对性的分析与讨论,并对光谱合束未来的发展趋势进行了展望。
强激光与粒子束
2020, 32(12): 121002
邹星星 1,2沈辉 2,***全昭 2尤阳 2[ ... ]张建华 1,*
作者单位
摘要
1 上海大学机电工程与自动化学院, 上海 200072
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
激光相干偏振合成(CPBC)是获得高亮度线偏振激光输出的有效方法。基于此,提出一种光相位调制技术,将两路光相位差转变为幅度调制,进行光外差偏振相位探测和线性锁相控制,实现了两路同频率激光光束的相干偏振合成。理论上详细分析了光外差偏振相位探测的理论模型和线性锁相控制环路的数学模型,用于优化系统参数。锁相控制后,合成光束的输出功率为352.4 mW,偏振消光比高达17.67 dB,系统的控制带宽约为66.1 kHz,剩余相位噪声为1×10 -4 rad·Hz -1/2(1 Hz)和3×10 -6 rad·Hz -1/2(>100 Hz)。相比于其他CPBC的锁相方法,该方法对偏振消光比以及控制带宽都有明显的提升,有效地抑制了相位噪声。
激光光学 相干偏振光束合成 光外差探测 偏振相位控制 偏振消光比 
光学学报
2020, 40(10): 1014002
尤阳 1,2漆云凤 1,*何兵 1沈辉 1[ ... ]刘美忠 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
光纤激光的主动偏振控制技术,可以在非保偏光纤中输出高消光比的激光。与保偏光纤激光器产生保偏激光相比,这种方法具有工艺简单、价格低廉的特点。本文主要介绍了主动偏振控制技术的基本原理,系统地阐述了近年来光纤激光主动偏振控制技术在国内外的发展情况,归纳了主动偏振控制技术发展的大致趋势。对主动偏振控制和偏振相干合成的锁相算法进行了简单的整理,最后对其发展方向进行了展望。
激光技术 光纤激光器 主动偏振控制 锁相 相干合成 优化算法 
激光与光电子学进展
2019, 56(10): 100001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!