孙宇松 1,2,3黄见 1,3,*时东锋 1,2,3苑克娥 1,2,3[ ... ]王英俭 1,2,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
传统多光谱关联成像技术的发展受限于系统结构复杂和数据量大。为提高多光谱图像的复原效率,本文提出了余弦编码复用多光谱关联成像技术。将具有确定频率的余弦结构编码与正交Hadamard基图案复用为结构光对目标场景进行调制照明,并用一个宽带光电倍增管收集后向散射信号。在复原过程中,基于余弦编码的傅里叶频移特性可将多通道光谱混叠信息由空间域转换到频率域进行解码分离,最终复原出目标场景的多光谱图像。通过仿真分析了理想低通滤波器、高斯低通滤波器和巴特沃斯低通滤波器对多光谱图像复原质量的影响,并将所提方法与传统方法进行了对比实验。结果表明:所提方法能有效提高多光谱信息的获取效率,缩短图像重建时间;频域滤波时,选用高斯低通滤波器比理想低通滤波器、巴特沃斯低通滤波器更具优势。
成像系统 关联成像 编码复用 多光谱成像 低通滤波器 
中国激光
2023, 50(13): 1317001
李能菲 1,*孙宇松 2,3黄见 2,4
作者单位
摘要
1 安徽职业技术学院机电工程学院, 安徽 合肥 230011
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
3 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
4 先进激光技术安徽省实验室, 安徽 合肥 230031
发展了一种余弦编码复用高空间分辨率关联成像技术。首先通过构造多个低空间分辨率的余弦编码散斑复用为高空间分辨率调制散斑对目标进行调制照明, 单像素探测器收集调制光与目标相互作用后产生的散射光强, 由迭代算法复原出目标的混叠图像。进而鉴于余弦编码所特有的确定性频谱结构, 利用数字图像处理方法高效解码重构出多个低空间分辨率物体图像, 最终拼接为高空间分辨率目标图像。理论分析了余弦编码复用高空间分辨率关联成像技术实现方法, 并仿真验证了该方法的有效性。本方法大幅降低了传统高空间分辨率关联成像所需的调制散斑, 减少了在线采样时间与离线图像重构时间, 提高了高空间分辨率关联成像的成像效率。
量子光学 关联成像 傅里叶变换 余弦编码复用 高空间分辨率成像 quantum optics ghost imaging Fourier transform cosine encoded multiplexing high spatial resolution imaging 
量子电子学报
2022, 39(6): 973
黄见 1,2时东锋 1,2孟文文 1,2查林彬 1,2[ ... ]王英俭 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
现有的多光谱成像技术通常采用光学分光的方式,使用多个探测器对成像场景的光谱图像进行采集,导致现有成像系统复杂,数据量大、效率低。针对现有技术的不足,提出基于正交调制模式的光谱编码计算关联成像技术。通过正交光谱编码矩阵融合Hadamard基图案构造投影散斑对宽带光源进行调制,单像素探测器收集成像物体与调制光源相互作用后的反射信号;应用演化压缩技术复原成像物体的混叠光谱图像;利用编码矩阵的正交性质解码出欠采样的光谱分量图像,对分离出的图像应用组稀疏压缩感知算法重构全采样的光谱分量图像,最后融合出成像物体的多光谱图像。通过数值模拟与实验两方面验证了所提方法的高效性。所提的技术简化了多光谱关联成像系统,降低了数据量。光谱编码方法可以扩展到更多的光谱通道,也可以应用在偏振关联成像、信息加密等领域。
光谱成像 关联成像 压缩感知 压缩压缩技术 spectral imaging ghost imaging compressed sensing evolutionary compressive technology 
红外与激光工程
2021, 50(1): 20200120
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学 研究生院 科学岛分院, 安徽 合肥 230026
3 皖西学院 电气与光电工程学院, 安徽 六安 237012
地表气压对温室气体浓度反演具有非常重要的影响。利用地基便携式傅里叶变换光谱仪EM27/SUN观测了敦煌地区H2O, CO2, CH4及CO气体分子的浓度, 获得了2018年6月27日到7月21日敦煌地区大气中XH2O, XCO2, XCH4及XCO的时间序列, 结合敦煌观测数据, 定量分析了地表气压对气体柱-平均摩尔分数Xgas(column-averaged dry air mole fractions, DMFs)反演的影响。结果表明: XH2O, XCO2, XCH4及XCO与地表气压密切相关, 相关系数均高于0.99, 柱总量随地表气压的变化快慢决定柱-平均摩尔分数随地表气压的变化趋势。相比较CO2, CH4及CO 分子, XH2O对地表气压的敏感性较弱, 地表气压改变1 hPa, XH2O, XCO2, XCH4及XCO分别变化0.027 8%, 0.065 9%, 0068 6%和0.062%; 观测期间, H2O, CO2的浓度变化幅度波动较大, XCH4, XCO变化较小, XH2O平均值在2 000×10-6~6 000×10-6变化, 而 XCO2平均值在407.27×10-6~417.60×10-6变化, 敦煌站点XH2O, XCO2, XCH4及XCO的测量精度分别为2.3%, 0.14%, 0.12%及1.7%, XCO2及XCH4的测量精度均优于TCCON网的测量精度; 与GOSAT卫星数据对比结果显示, 地基反演的XCO2, XCH4值均偏大, XCO2的绝对偏差为7.07×10-6, XCH4的绝对偏差为0.025×10-6; 与WACCM数据对比显示, 地基反演XCO2结果多数大于WACCM值, 最大绝对偏差可以达到80×10-6, 地基反演XCH4值小于WACCM值, 最大绝对偏差为0.032×10-6。实时观测数据更能反映当地的具体情况, 研究结果可为我国温暖带干旱性气候温室气体源与汇的研究提供数据支撑和理论基础。
傅里叶变换光谱技术 温室气体 分子摩尔分数 地表气压 Fourier transform infrared spectroscopy greenhouse gases Dry air Mole Fractions(DMFs) GOSAT satellite data surface pressure 
光学 精密工程
2020, 28(3): 573
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 大气光学重点实验室, 合肥 230031
2 中国科学技术大学 研究生院科学岛分院, 合肥 230026
3 皖西学院 电气与光电工程学院, 安徽 六安 237012
4 卡尔斯鲁厄理工学院, 德国 卡尔斯鲁厄 76131
利用地基傅里叶变换光谱仪EM27/SUN观测了合肥地区H2O、CO2、CH4及CO四种气体分子的柱浓度.观测结果表明:合肥地区XH2O、XCO2在测量期间变化较大,H2O和CO2的变化幅度分别为1 353.17~5 289.43 ppm及409.22~415.05 ppm;XCH4和XCO两种气体分子的变化较小,其标准差均在10-2数量级;XH2O、XCO2、XCH4和XCO的平均值分别为2 109.10 ppm、411.59 ppm、1.87 ppm及0.13 ppm.将地基观测数据XCO2、XCH4分别与WACCM模式、GOSAT卫星数据进行了对比分析.结果表明,WACCM模式计算XCO2、XCH4的浓度比较稳定,仅在平均值附近有微幅变化,GOSAT卫星观测值略低于地基EM27/SUN的观测值,XCO2、XCH4相对偏差分别为0.45%和0.34%.利用GOSAT卫星数据分析了2010~2018年春季XCO2与XCH4的变化趋势,发现XCO2值从390.83 ppm增加到410.30 ppm,相对增长率为4.9%;XCH4值从1.802 ppm增加到1.869 ppm,相对增长率为3.7%.其结果可为追踪合肥及周边地区温室气体的源与汇提供科学依据.
傅里叶变换光谱技术 温室气体 柱总量 GOSAT卫星数据 Fourier transform infrared spectroscopy EM27/SUN EM27/SUN Greenhouse gases Total column WACCM WACCM Satellite data 
光子学报
2020, 49(3): 0301002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!