作者单位
摘要
深圳光韵达光电科技股份有限公司, 广东 深圳 518000
介绍了激光氧化铝陶瓷基板划片的基本原理,由三维固体中的热传导微分公式描述激光与材料的热过程,对激光加工的氧化铝陶瓷基板表面的损伤阈值进行了计算分析。利用相干公司400 W 的E400 射频CO2激光器、IPG 公司YLR-150/1500-QCW-AC 150 W 准连续型光纤激光器搭建了激光加工平台,对1 mm 厚度内的96%氧化铝陶瓷基板进行了切割和划片加工实验。实验中,通过在陶瓷基板表面涂抹吸收剂,利用氮气作为辅助气体,解决了光纤激光器在连续波模式下加工时由于氧化铝陶瓷高反特性出现的切割和划片断点问题。实验表明,当光纤激光器工作在准连续波模式时,实现了无需对陶瓷表面进行涂吸收剂处理,直接用空气作为辅助气体对1 mm 厚度内96%氧化铝陶瓷基板的切割和划片。
激光光学 激光陶瓷划片 氧化铝陶瓷基板 激光加工 准连续光纤激光器 射频CO2激光器 
激光与光电子学进展
2015, 52(10): 101404
作者单位
摘要
深圳光韵达光电科技股份有限公司, 广东 深圳 518051
采用波长为1070 nm 的光纤激光对蓝宝石基片进行切割加工。研究了蓝宝石基片切割过程中,蓝宝石基片下表面产生粉末物质和崩边的原因,并分析了激光加工工艺参数(激光能量密度、切割速度、重复频率、辅助气体压力)与蓝宝石基片上下表面崩边尺寸的关系。研究结果表明:光纤激光与蓝宝石之间的相互作用主要是光热作用,蓝宝石材料吸收激光能量后发生熔化、气化现象。同时,伴随辅助气体N2 被击穿后产生的等离子体对激光的吸收,在蓝宝石内部出现了钥匙孔现象,钥匙孔的长度对切割质量有较大的影响。综合考虑激光切割蓝宝石基片工艺参数以及辅助气体压力等因素,激光能量密度为5.7 ×103 J/cm2 、切割速度为6 mm/s、重复频率为1.8 kHz、N2 压力为0.9 MPa时,获得了厚度为0.31 mm 的蓝宝石基片,上表面崩边为3 mm,下表面崩边为8 mm。
激光光学 材料 激光切割 光纤激光 蓝宝石 
激光与光电子学进展
2015, 52(8): 081403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!