Jian Fan 1,2Xuyan Zhou 1,3,4,**Weiqiao Zhang 1,2Yufei Wang 1,2,5[ ... ]Wanhua Zheng 1,2,3,5,*
Author Affiliations
Abstract
1 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 Weifang Academy of Advanced Opto-Electronic Circuits, Weifang 261071, China
5 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
We first study the effect of cavity modes propagating in the lateral dimension on high-power semiconductor lasers with a large stripe width. A sidewall microstructure was fabricated to prevent optical feedback of lateral resonant modes. Theoretically, we demonstrate the existence of lateral resonant modes in the Fabry–Perot cavity with a large stripe width. Experimentally, we design the corresponding devices and compare them with conventional broad-area diode lasers. About a 15% reduction in threshold current and a 27% increase in maximum electro-optical conversion efficiency are achieved. The amplified spontaneous emission spectrum is narrowed, which proves that lateral microstructures suppress optical feedback of lateral resonant modes. Under a large continuous-wave operation, the maximum output power of laser device is 43.03 W, about 1 W higher than that of the standard broad-area laser at 48 A.
high power broad area laser resonant mode amplified spontaneous emission 
Chinese Optics Letters
2023, 21(4): 041406
Xiaoxu Xing 1,2Xuyan Zhou 1,3,*Hongwei Qu 1,4Weiqiao Zhang 1,2[ ... ]Wanhua Zheng 1,3,4,6,**
Author Affiliations
Abstract
1 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Weifang Academy of Advanced Optoelectronic Circuits, Weifang 261021, China
4 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
We studied the spectral beam combining (SBC) of a large optical cavity (LOC) laser array to achieve high-power and high-brightness laser output. We discussed the characteristics of the external cavity feedback efficiency and the focal length of the transform lens for lasers with different waveguide thicknesses. We have found that using LOC laser diodes can increase the proportion of external cavity feedback, thereby improving the SBC efficiency. At a current of 90 A, the CW output power of the SBC system is 59.2 W, and the SBC efficiency reaches up to 102.8%. All emitters of the laser array have achieved spectral locking with a spectral width of 11.67 nm, and the beam parameter product is 4.38 mm·mrad.
spectral beam combining large optical cavity high efficiency 
Chinese Optics Letters
2022, 20(6): 061402
作者单位
摘要
华北光电技术研究所固体激光技术重点实验室, 北京 100015
报道了一种激光二极管阵列双端双程抽运Yb∶YAG板条激光器。基于抽运光在晶体中的吸收特性,建立双端双程抽运与双端单程抽运结构的抽运分布模型,理论分析了双端双程抽运的优点。在抽运光重复频率为400 Hz、脉宽为1 ms、单脉冲总能量为12 J的条件下,利用偏振复用技术实现双端双程抽运板条激光器,获得单脉冲激光的输出能量约为6.13 J,光-光转化效率约为50%。与具有相同掺杂浓度以及相同抽运光吸收效率的双端单程抽运方式相比,双端双程抽运的输出激光能量更高,转化效率更高,稳定性更强。理论分析与实验结果证明双端双程抽运方式有利于进一步提升激光输出的能量与效率。
激光器 激光二极管 双程抽运 Yb∶YAG; 
中国激光
2019, 46(11): 1101007
作者单位
摘要
华北光电技术研究所固体激光技术重点实验室, 北京 100015
基于光纤与板条结合的主振荡功率放大器(MOPA)结构,以单模光纤激光器作为种子源,对Yb∶YAG表层增益板条进行功率放大。对单程及双程两种提取方式进行理论计算及实验研究,结果表明:在室温下,获得了1030 nm激光输出;当注入种子光功率为200 W,抽运光功率为11.2 kW时,单、双程放大输出功率分别为1.6 kW和2.6 kW,光-光转换效率分别为12.8%和21.4%;测得Yb∶YAG表层增益板条的透射波前畸变为1.3 μm;Yb∶YAG表层增益板条具有作为高功率激光器增益介质的潜力。
激光器 激光放大器 表层增益 双程提取 
中国激光
2018, 45(11): 1101003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!