作者单位
摘要
1 西安理工大学 自动化与信息工程学院,西安 710048
2 西安工业大学 电子信息工程学院,西安 710021
3 中国计量大学 信息工程学院,杭州 310018
4 商洛学院 电子信息与电气工程学院,陕西 商洛 726000
5 西安工程大学 电子信息学院,西安 710600
6 兰州理工大学 计算机与通信学院,兰州 730050
【目的】

变形镜(DM)是自适应光学系统中实现波前校正的关键器件,其性能直接决定了系统的波前畸变校正能力。通过研究DM及其控制算法,可以不断改进自适应光学系统的校正能力。该研究一方面可以提高DM的精度和响应速度,使其更好地校正各种复杂的波前畸变,另一方面,可以改进控制算法,提高校正的效率和准确性。这些都将直接影响到自适应光学系统的成像质量和性能,因此,研究DM及其控制算法对于改进自适应光学系统的校正能力、扩展应用领域以及提升成像质量和性能具有重要意义。

【方法】

文章旨在梳理国内外关于DM及其控制算法的研究进展,分析不同的控制算法对波前畸变的校正精度,为自适应光学的发展奠定基础。首先以几种典型的DM为例,对DM的建模以及对分离促动器DM、拼接子DM、薄膜DM、双压电DM、微机电系统(MEMS)DM和音圈DM的结构及工作原理进行了详细介绍。接着分析了基于Prandtl-Ishlinskii(PI)迟滞模型的控制算法、解耦控制算法和稀疏采样控制算法等几种控制算法。

【结果】

文章总结了西安理工大学在该领域所做的工作,最后指出了未来在该领域的技术突破和改进方向。

【结论】

DM及其控制算法的研究为自适应光学的发展奠定了基础,使其应用于更多的领域,进一步提高自适应光学系统的性能。这将有助于改善成像质量,推动自适应光学技术的发展。

变形镜 控制算法 自适应光学 DM control algorithm adaptive optics 
光通信研究
2024, 50(2): 22006201
李佳宁 1,2,3,4,5,*葛欣 1,2,3,4,5黄子轩 1,2,3,4,5刘振 1,2,3,4,5[ ... ]张晓丹 1,2,3,4,5
作者单位
摘要
1 南开大学光电子薄膜器件与技术研究所,可再生能源转换与存储中心,太阳能研究中心,天津 300350
2 天津市光电薄膜器件与技术重点实验室,天津 300350
3 物质绿色创造和制造海河实验室,天津 300192
4 教育部薄膜光电技术工程研究中心,天津 300350
5 化学科学与工程协同创新中心(天津),天津 300072
氧化镍作为高效钙钛矿太阳电池中常用无机空穴传输层材料,具有良好的光学透过性及化学稳定性,并且还可以通过磁控溅射等方法进行大面积制备,且成本低廉。然而相比于有机空穴传输材料,氧化镍和钙钛矿界面处的能级失配、缺陷及不良化学反应等限制了基于氧化镍空穴传输层的宽带隙钙钛矿太阳电池的性能。为解决这一问题,本文提出了采用(2-(9H-咔唑-9-基)乙基)膦酸((2-(9H-carbazol-9-yl) ethylphosphonic acid, 2PACz)自组装层作为氧化镍/宽带隙钙钛矿界面修饰材料。该分子可以有效钝化氧化镍表面缺陷、调节上层钙钛矿的成膜及促进界面电荷传输,最终宽带隙钙钛矿太阳电池的光电转换效率由16.18%提升至18.42%。本工作为氧化镍空穴传输层在宽带隙钙钛矿太阳电池中的应用提供了一种可借鉴的策略。
宽带隙钙钛矿太阳电池 空穴传输层 氧化镍 自组装层 磁控溅射 刮涂法 wide-bandgap perovskite solar cell hole transport layer nickel oxide self-assembled layer magnetron sputtering blade-coating method 
人工晶体学报
2023, 52(8): 1458
作者单位
摘要
1 成都信息工程大学计算机学院, 四川 成都 610225
2 燕山大学电气工程学院, 河北 秦皇岛 066000
3 燕山大学信息科学与工程学院, 河北 秦皇岛 066000
海面上存在的溢油, 主要包括未乳化与乳化两种。 对海面溢油进行科学的探测评估, 有助于溢油污染的回收处理和应急方案的制定。 未乳化溢油, 主要以油膜形式存在, 其厚度成为溢油量的重要评估指标; 乳化溢油, 主要以油包水或水包油形式存在, 其油水比可作为评估依据。 激光诱导荧光(LIF)技术被认为是目前有效的海面溢油探测手段之一。 基于LIF探测技术的油膜厚度反演已有相关的算法, 但关于海面乳化溢油还没有相应的溢油量化方法, 而海面乳化溢油会给海洋环境带来更大危害。 所以对海面乳化溢油信息的分析和研究成为海洋激光荧光探测的迫切任务。 基于此, 从LIF系统探测机理出发, 提出一种针对油包水型乳化溢油的等效估算模型, 并推导出等效估算公式; 首先将油包水中连续相的溢油看作具有相同光学性质的油膜, 而所有分散相的水滴看成一个整体, 将其等效为薄水层, 为了将等效模型和实际乳化液存在的外部环境保持一致, 在薄水层上面再覆盖一个油面, 从而把油包水型乳化溢油的溢油量估算问题转换成等效油膜的厚度计算问题; 其次根据光的辐射传输过程, 建立系统接收的荧光信息的方程, 并整理出油膜厚度的计算公式, 即已知油种的前提下, 将系统测得的荧光强度值代入就可求得对应的厚度值, 进而实现溢油量的估算。 通过实例对等效模型产生的误差进行了具体分析, 验证等效模型估算方法的适用性和有效性: 即油包水乳化液的含油率和厚度均在一定范围时, 实际溢油厚度与等效油膜厚度具有较小误差。 该等效处理方法可为海面乳化溢油量的估算提供一种新的办法, 具有重要的指导意义和一定的创新价值。
油包水 激光诱导荧光 等效模型 乳化溢油油水比 溢油量 Water in oil Laser induced fluorescence Equivalent model Oil/water ratio of emulsion spillage Oil spill 
光谱学与光谱分析
2023, 43(2): 342
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066099
2 燕山大学电气工程学院, 河北 秦皇岛 066099
水包油乳化液的溢油量是海面溢油污染评估分析的一个重要指标。 激光诱导荧光(LIF)是目前海面溢油遥感探测领域一项最好的技术之一。 基于LIF探测技术的海面水包油溢油量的评估目前尚无一套有效且完整的算法。 鉴于此, 首先设计了一种水包油乳化液溢油量的等效评估模型: 将水包油乳化液中分散相油滴假设聚集为漂浮在海面上的成片油膜, 如此就将水包油乳化液溢油量的评估问题转化为具有相同荧光效果的等效模型中油膜厚度的估测问题; 其次基于LIF探测机理和荧光辐射传输过程, 建立了LIF系统接收的荧光信号方程, 进而反演求得油膜厚度的计算公式; 最后选择具有代表性的重质、 轻质两种油品, 通过仿真实验验证了等效模型的正确性和将探测的水包油乳化液的荧光信号强度通过等效算法求取了油膜厚度, 并对等效误差进行了分析, 得出了等效评估算法的适用条件: 即当水包油乳化液的实际溢油厚度≤其荧光平稳时的最小溢油厚度时, 本文的等效评估算法具有较高精度, 其平均误差在8%以内; 而当实际溢油厚度>荧光平稳时的最小溢油厚度时, 等效评估误差增大, 其平均值超出25%。 另外, 采用本文算法对重质、 轻质水包油乳化液的溢油量进行等效评估时, 实际溢油厚度分别不大于2和16 μm时可得到较好估测结果。 所以, 本文研究内容对基于LIF技术探测的海面水包油乳化液的溢油量评估是一种可行和有借鉴意义的方法。
水包油乳化液 溢油量 等效评估算法 激光诱导荧光 Oil-in-water emulsion Oil spill volume Equivalent evaluation algorithm Laser-induced fluorescence 
光谱学与光谱分析
2022, 42(12): 3665
作者单位
摘要
1 成都信息工程大学计算机学院, 四川 成都 610225
2 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
随着海洋运输业和海洋石油开采业的快速发展, 溢油污染日益严重, 给海洋环境和海洋生态平衡带来极大威胁。 因此海洋溢油污染的治理、 改善, 成为海洋环境保护工程中刻不容缓的重要工作。 而对不同状态溢油的识别则是解决溢油污染问题的基础与关键。 海面上的溢油, 主要包括未乳化与乳化两个不同阶段。 前者以不同厚度的油膜形式存在, 后者以不同油水比的溢油乳化物形式存在。 不同状态的海面溢油具有不同的元素组成: 油膜为纯油分子, 乳化溢油为油水混合结构, 构建出差异化的荧光基团。 在激光作用下具备各自特征的荧光光谱信息, 不同状态显示出较为明显的荧光光谱差异。 光谱曲线的形状特征是荧光物质物理化学性质的一种外在体现, 所以从光谱的特征形状来分析、 比较一定的光谱参量可以达到物质分类和物种识别的目的和效果。 为了实现海面溢油不同状态的快速分类识别, 通过搭建的LIF探测系统, 采集了常用成品油不同状态的荧光光谱, 光谱曲线对比发现: 乳化阶段的光谱会表现出荧光峰个数增多、 荧光强度改变、 荧光峰位偏移等一系列特征。 在此基础上, 根据表观统计学原理, 提取光谱的均值、 标准差、 峰度系数、 谱线宽度、 曲线斜率等特征参量, 并将这些特征值进行聚类分析。 结果显示: 基于激光诱导荧光光谱的海面溢油聚类分析结果与实际溢油状态是基本一致的。 即在已知油种的前提下, 该分类方法可较好识别出海面不同的溢油状态。 因此该方法可以为海面溢油识别提供一种新思路, 也为LIF技术探测质量的提高, 应用水平的提升奠定一定的基础。
激光诱导荧光 荧光光谱 溢油乳化物 特征参量 聚类分析 Laser induced fluorescence Fluorescence spectrum Oil spill emulsions Characteristic parameter Cluster analysis 
光谱学与光谱分析
2022, 42(7): 2018
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 燕山大学电气工程学院, 河北 秦皇岛 066004
3 河北环境工程学院信息工程系, 河北 秦皇岛 066000
海面溢油污染是常见的海洋污染之一, 通常以未乳化、 乳化等风化状态存在, 其中乳化阶段对海洋危害更加显著。 因此, 快速监测海面溢油信息, 准确识别并评估乳化溢油污染对溢油应急处理和生态环境保护具有重要意义。 激光诱导荧光(LIF)是目前有效的海面溢油探测技术之一。 LIF探测系统可分为收发共轴和非共轴形式。 有关收发共轴LIF系统对海面乳化溢油探测的研究较少, 利用Mie散射理论计算得到溢油乳化液的吸收系数、 散射系数等光学参数, 建立蒙特卡罗光子传输模型对乳化溢油进行双向反射再辐射分布函数(bidirectional reflectance and reradiation distribution function, BRRDF)的仿真研究。 分析浓度、 厚度、 油种多参数下乳化溢油的fBRRDFcos2θ与发射接收角度的关系, 进而得到基于收发共轴LIF系统海面乳化溢油探测的适宜条件。 结果表明, fBRRDFcos2θ与发射接收方位角无关, 但受发射接收天顶角的影响较大, 各参数下乳化溢油的fBRRDFcos2θ其变化规律具有一定差异性。 重质油包水和低浓度水包油的fBRRDFcos2θ对天顶角的变化更敏感, 轻质油包水和高浓度水包油的fBRRDFcos2θ对较小角度(0°~45°)不敏感, 之后迅速下降。 因此基于收发共轴LIF系统对海面乳化溢油进行探测时, 发射接收天顶角在0°~45°范围内为宜, 其中在0°处系统可接收到最大光功率。 另外, 为验证仿真正确性, 利用实验室LIF系统对乳化溢油进行收发共轴式测量荧光光谱, 发现此与仿真结果具有一致性趋势。
激光诱导荧光 乳化溢油 收发共轴 双向反射再辐射分布函数 Laser induced fluorescence Emulsified oil spill Coaxial transceiver Bidirectional reflectance and reradiation distribution function 
光谱学与光谱分析
2022, 42(2): 592
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066000
2 燕山大学电气工程学院, 河北 秦皇岛 066000
3 河北环境工程学院信息工程系, 河北 秦皇岛 066000
随着海洋溢油问题的日益严重, 多种遥感技术被用于海面溢油监测, 其中激光诱导荧光(LIF)技术是目前被认为最有效的海面溢油探测技术之一。 Hoge等基于LIF技术提出了一种利用拉曼散射光评估薄油膜厚度的积分反演算法并广泛应用于海面溢油探测, 针对该算法存在误差较大的问题, 提出一种融合拉曼散射光和荧光信号评估海面溢油厚度的反演算法。 首先利用拉曼散射光信号反演油膜厚度, 然后利用该反演结果计算获取溢油油品的荧光特征光谱, 最后利用荧光信号反演油膜厚度。 文中推导了利用荧光信号反演油膜厚度的算法, 给出了油品荧光特征光谱的逼近算法, 并给出了利用荧光信号反演油膜厚度的误差分析。 通过实验对该方法进行了验证, 选用原油和柴油为实验油品, 以波长405 nm的激光作为激发光源, 采集波长范围为420~700 nm, 采集了海水的背景荧光和拉曼散射光信号、 实验油品2, 5, 10和20 μm等不同厚度油膜的光谱信号。 将采集数据分为训练集和测试集, 利用训练集数据采用梯度下降法获取油品的荧光特征光谱, 利用测试集数据分别采用积分拉曼法和该方法反演油膜厚度。 采用积分拉曼法, 原油不同厚度油膜反演结果的平均误差分别为12.6%, 4.6%, 4.4%和2.3%, 柴油不同厚度油膜反演结果的平均误差分别为14.0%, 7.0%, 4.2%和3.6%; 采用本文方法, 原油不同厚度油膜反演结果的平均误差分别为2.5%, 2.2%, 1.2%和1.1%, 柴油不同厚度油膜反演结果的平均误差分别为3.0%, 2.4%, 2.7%和1.6%。 实验结果表明, 2 μm油膜反演结果的误差降低最多, 原油和柴油2 μm油膜的反演结果误差分别由12.6%和14.0%降低为2.5%和3.0%, 其他厚度油膜反演结果的误差也有较大程度的降低, 油膜厚度反演结果的误差均小于3%, 采用本文算法可以有效提高油膜厚度反演结果的精度。
激光诱导荧光 荧光光谱 海面溢油 油膜厚度 梯度下降法 Laser induced fluorescence Fluorescence spectrum Oil spill on the sea surface Oil film thickness Gradient descent 
光谱学与光谱分析
2022, 42(1): 104
作者单位
摘要
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 燕山大学电气工程学院, 河北 秦皇岛 066004
3 河北环境工程学院信息工程系, 河北 秦皇岛 066000
海面溢油污染是最常见的污染之一, 通常以不同风化状态存在于海面上, 如未乳化阶段油膜, 乳化阶段水包油、 油包水等。 因此, 快速准确的监测海面溢油信息, 识别、 分类及定量评估不同阶段的溢油污染, 对海洋污染快速治理和生态环境恢复具有重要意义。 激光诱导荧光(LIF)是目前最有效的海面遥感探测技术之一。 双向反射再辐射分布函数(BRRDF)通过描述目标受激发射的荧光分布来表征目标的荧光性质。 目前基于LIF探测技术除对海面溢油未乳化阶段油膜和乳化阶段水包油有所研究外, 尚未对乳化阶段中油包水乳化液荧光特性方面开展相关研究。 鉴于此, 利用米氏散射理论得到油包水乳化液的光学参数, 对油包水乳化液建立蒙特卡罗光子传输模型以开展BRRDF研究, 探讨与分析油包水乳化液在含油率、 入射接收角度、 厚度参数下fBRRDFcosθrcosθi(荧光出射角θr, 激光入射角θi)的变化, 并利用实验测量的荧光光谱数据与仿真进行对比验证。 结果表明, fBRRDFcosθrcosθi值随乳化液含油率(海水表层乳化液的含油率)的升高呈下降趋势, 并与实验采集到的荧光光谱数据具有一致性趋势, 为基于LIF技术对海面溢油油包水乳化液含油率的推断提供依据; fBRRDFcosθrcosθi值随θi的增大开始变化比较缓慢, 当θi>65°时迅速减小, 并随θr继续增大而持续减小, 与实验采集到的光谱数据趋势相吻合, 此趋势说明利用LIF技术对海面油包水乳化液进行探测时, 激光入射角度不宜超过65°且垂直海面可接收到最大光信号; fBRRDFcosθrcosθi值随乳化液厚度的升高先上升后变得平稳, 说明fBRRDFcosθrcosθi可评估海面溢油油包水乳化液的最小厚度。 该研究内容为基于LIF技术探测海面溢油提供理论和技术支持。
激光诱导荧光 油包水乳化液 双向反射再辐射分布函数 蒙特卡罗 Laser induced fluorescence Water-in-oil emulsion Bidirectional reflectance and reradiation distribution function Monte Carlo 
光谱学与光谱分析
2021, 41(12): 3797
郑伟 1,2,3李涵 1,2,3安晓林 1,2,3刘帅奇 1,2,3[ ... ]马泽鹏 4,*
作者单位
摘要
1 河北大学 电子信息工程学院, 保定 071002
2 河北省数字医疗工程重点实验室, 保定 071002
3 河北省机器视觉工程技术研究中心, 保定071002
4 河北大学附属医院, 保定 071000
为了解决阿尔茨海默病3维正电子发射断层成像(PET)与核磁共振成像(MRI)相同位置强度不同问题, 同时保留MRI大脑皮质、脑回沟、海马体等的萎缩情况,首先将两幅源图像在统计参量图(SPM)中预处理, 再利用3维剪切波系统(ShearLab 3D)最优表达高维数据的能力对图像分解, 生成低高频子带, 并以方差作为阈值将高频子带分为中高频子带。低频子带使用3维扩展的加权局部能量与改进拉普拉斯算子的加权和加权的融合规则, 并引入锐化矩阵为权重参量, 使融合图像边缘清晰;中频子带以绝对值为活动度量增强图像的边缘信息;高频子带以3个3维底层特征加权融合规则增强图像的细节特征。最后, 利用ShearLab 3D逆变换获得PET/MRI图像。结果表明, ShearLab 3D变换的融合结果整体优于空域和小波变换; ShearLab 3D方法中将不同融合规则对比分析, 该算法融合结果的平均梯度、空间频率、边缘强度、综合熵分别提高了11.09%, 22.58%, 152.68%, 0.58%, 解决了边缘模糊、细节不清晰的问题。该研究为PET/MRI图像融合提供了参考。
图像处理 图像融合 ShearLab 3D软件 拉普拉斯算子的加权和 image processing image fusion PET/MRI PET/MRI ShearLab 3D software weighted sum of based modified Laplacian 
激光技术
2021, 45(1): 86
作者单位
摘要
油膜厚度是海面溢油污染评估分析的一个重要指标, 激光诱导荧光(LIF)技术是目前最有效的海面溢油探测技术之一, 基于LIF探测技术的油膜厚度反演算法当下仅有适用于薄油膜(≤10~20 μm)的评估方法, 而对于较厚油膜(>20 μm)的评估目前尚无有效的反演算法。 鉴于此, 提出一种基于LIF技术适用于较厚油膜的反演算法, 该算法采用油膜荧光信号反演油膜厚度, 推导了油膜厚度反演公式, 并给出了基于该反演算法的油膜厚度评估方法。 首先采用最大类间方差算法(Otsu)选取合适的荧光光谱波段, 然后根据选取波段内每个波长的光谱数据反演油膜厚度, 最后采用反演油膜厚度的平均值作为油膜厚度评估结果。 研究了该算法的适用范围, 给出了该算法有效评估范围最大值与测量相对误差的关系, 并结合消光系数给出了在多种测量误差条件下不同消光系数油品有效评估范围的最大值。 通过实验对本文方法进行了验证, 选用原油和白油的混合油(1:50)作为实验油品, 以波长为405 nm的激光作为激发光源, 采集波长范围为420~750 nm, 采集了海水背景荧光和拉曼散射光光谱、 实验油品的荧光特征光谱和多种不同厚度的较厚油膜的荧光光谱。 采用Otsu算法选取420~476 nm波段评估油膜厚度, 在实验油品油膜厚度≤800 μm时, 该算法对油膜厚度的评估具有较高的精度, 平均误差为10.5%; 在油膜厚度>800 μm时, 平均误差为28.8%, 评估误差较大且随油膜厚度的增加快速变大, 该实验结果与利用测量相对误差和消光系数的分析结果一致。 实验结果表明, 该方法可以实现对海面较厚油膜厚度的有效评估, 并可以根据测量相对误差和消光系数判断评估结果的有效性。
激光诱导荧光 荧光光谱 油膜厚度 Laser induced fluorescence Fluorescence spectrum Otsu Oil film thickness Otsu 
光谱学与光谱分析
2021, 41(1): 150

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!