徐晨 1,2,3宋岸鹏 1,2,3晋凯 1,2,*魏凯 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
逆合成孔径激光雷达(ISAL)是一种相干成像系统,其图像具有明显的散斑,影响目标识别和判断。为解决该问题,近年来有学者提出一种基于模型的迭代重构(MBIR)算法。该算法直接重构目标反射率而非复反射系数(传统重构方法普遍采用的),所重构图像质量更接近光学图像。然而,该算法存在优化模型较复杂、采用的无梯度线搜索算法求解效率较低且不易收敛的问题。针对以上问题,进行两点改进。首先从信息传递的角度得到复反射系数分布、反射率分布和测量信号之间的马尔可夫关系,据此将复反射系数假设为反射率估计的完整数据集,简化了优化模型。其次,针对模型求解,应用更容易求解梯度的先验模型替代函数,并结合对数变换,将原问题转换为含梯度的无约束问题,进行高效求解。最后通过仿真数据和7 km外场实验数据验证了所提改进方法的有效性和效率。结果表明,对于高中低具有不同载噪比(5 dB、0 dB、-5 dB)的回波数据,所提改进方法在5次迭代之内即可得到较优质量的图像。
合成孔径激光雷达 计算成像 贝叶斯估计 图像重构 
激光与光电子学进展
2023, 60(12): 1228001
董若曦 1,2,3李敏 1,2晋凯 1,2熊闻全 4魏凯 1,2,3,*
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学北京 100049
4 中国人民解放军32035部队陕西 西安 710600
等晕误差中的piston项对成像质量没有影响,无需校正,有效非等晕误差应去除该项。为此提出利用夏克-哈特曼波前传感器测量双星波前误差的方法,计算得到去piston项误差后的等晕角。首先,根据Sasiela和Van Dam给出的角度非等晕误差解析表达式,计算不同条件下的非等晕误差理论值;其次,利用相位屏法,模拟不同大气环境下实际自适应光学系统波前误差测量过程,仿真得到非等晕误差值。数值仿真结果与理论计算有较好的吻合,并得到了波前误差与去piston项等晕角的对应关系。最后,基于丽江1.8 m望远镜系统,测量双星的非等晕误差,计算得到去piston项等晕角的大小。并使用差分像运动法和恒星闪烁法,对该方法进行了印证。去piston项等晕角测量实验的结果表明,去piston项等晕角在时间维度上变化缓慢,在空间维度上差别很大,当方位及仰角差距较远的情况下,去piston项等晕角的值没有相关性。根据该方法,也可计算出其他望远镜及大气模型下的波前误差值与去piston项等晕角的对应关系,为信标的位置选择提供了依据。
大气光学与海洋光学 自适应光学 非等晕误差 等晕角 波前误差探测 
激光与光电子学进展
2022, 59(21): 2101001
李建 1,2,3王鲲鹏 4晋凯 1,2徐晨 1,2,3[ ... ]魏凯 1,2,*
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
4 北京跟踪与通信技术研究所, 北京 100094
逆合成孔径激光雷达(ISAL)成像运动补偿中,包络对齐的精度直接影响了相位误差估计精度。当目标速度和加速度较大时,距离包络严重倾斜且相位误差较大,图像无法进行良好聚焦。针对上述问题,在高精度成像模型的基础上提出了一种基于Nelder-Mead单纯形法和粒子群优化的全局联合运动误差补偿算法。首先,利用单纯形法估计目标速度,完成包络对齐。然后,将包络对齐过程获得的目标速度作为相位误差估计中参数初始化的约束条件。最后,用粒子群优化算法对各运动参数进行全局搜索并得到最优解,实现高精度运动参数估计及高阶相位误差补偿,得到聚焦良好的二维图像。实验结果表明,本算法的参数估计误差主要分布在±0.2%以内,参数估计精度和抗噪声性能均优于传统ISAL成像算法。
遥感 逆合成孔径激光雷达 运动补偿 Nelder-Mead单纯形法 粒子群优化算法 参数估计 
光学学报
2021, 41(19): 1928001
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209;中国科学院光电技术研究所,四川 成都 610209;中国科学院大学,北京 100049
2 中国科学院自适应光学重点实验室,四川 成都 610209;中国科学院光电技术研究所,四川 成都 610209
系外行星的直接成像是当今国际天文学研究的热点,而对潜在的系外行星候选体进行大面积普查将是未来十年天文学的迫切需要。国际上中小型2 m级望远镜上部署的ROBO-AO瑞利激光信标自适应光学系统(AO),可以灵敏而快速地删察系外行星候选体。但瑞利信标高度引起的聚焦非等晕效应是限制其行星探测能力的重要因素。基于1.8 m望远镜61单元钠信标自适应光学系统优化构建系外行星高对比度成像系统,它将在近红外波长范围内提供系外行星的高对比度成像。通过对钠信标AO高对比度成像过程的仿真,发现在理论上,钠信标AO系统的系外行星高对比度成像性能优于ROBO-AO,即在2 h曝光时间内,可以实现与母恒星光通量比为4×10?7的行星的直接成像,而相同环境下,ROBO-AO系外行星直接成像能力为1×10?6,其中行星与恒星的角间距为1''''。
钠信标 高对比度成像 星冕仪 自适应光学系统 sodium laser guide star high-contrast imaging coronagraph adaptive optics system 
红外与激光工程
2020, 49(8): 20200058
黄建 1,2,3魏凯 1,2晋凯 1,2,3王功长 4[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
4 清华大学 精密仪器系, 北京100084
钠信标已经成为地基大口径望远镜自适应光学系统的必要组成部分。钠信标光斑大小和回光数是影响自适应光学系统性能的关键因素, 从发射角度考虑, 主要由激光到达钠层时功率密度分布和耦合效率共同决定。为了准确估计钠信标光斑大小和回光数, 首先建立了激光在大气中传输的模型, 通过分析激光发射望远镜口径和上行路径大气湍流对激光到达钠层功率密度分布的影响, 得出优化激光发射望远镜口径的普适方法; 然后根据激光通过发射望远镜后到达钠层的功率密度与耦合效率的关系, 计算钠信标光斑大小和回光数; 最后利用探测误差和时域误差作为评价指标, 计算了系统的最优采样频率。研究结果表明, 针对丽江高美古天文台大气条件(大气相干长度(r0@550 nm)中值为7~9 cm), 激光发射望远镜口径最佳值为300 mm, 此时产生的光斑最优; 当r0为9 cm, 激光器采用中国科学院理化技术研究所20 W级百微秒脉冲激光器并利用D2a+D2b双峰泵浦激发钠原子时, 产生的钠信标回光数为1.3×107 photons·s-1·m-2, 光斑大小为0.6 ″, 最优的采样频率为900 Hz。
自适应光学 钠信标 光斑大小 回光数 采样频率 adaptive optics sodium laser guide star spot size photon return sampling frequency 
红外与激光工程
2019, 48(1): 0106004
晋凯 1,2,3,*魏凯 1,2李敏 1,2程锋 1,2[ ... ]张雨东 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所 自适应光学研究室, 四川 成都 610209
3 中国科学院大学, 北京 100049
4 中国科学院理化技术研究所, 北京 100190
5 中国科学院国家天文台, 北京 100012
6 中国科学技术大学, 安徽 合肥 230026
7 中国科学院武汉物理与数学研究所, 湖北 武汉 430071
8 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
9 三十米望远镜天文台, 美国 帕萨迪纳 91107
钠信标激光器与钠原子间的耦合效率是其性能评价的核心指标之一, 为对钠信标激光器的激发效率实现精确测量, 在云南丽江1.8 m望远镜上搭建了一套完整的激光钠信标测光系统, 该系统由钠信标激光器、激光中继光路和激光发射望远镜、钠信标接收望远镜、钠原子激光雷达、大气视宁度测量仪等组成。自2011年以来利用该系统对中国科学院理化技术研究所20 W级百微秒脉冲激光器所产生的钠信标进行了相应的测量标定, 成功得到了半高全宽最小为3′(对应到90 km高度处为1.3 m)的钠信标图像, 并测量了在不同的出光功率、偏振状态和中心波长下钠信标的回光结果。实验中分析了滤光片、CCD量子效率曲线等在对钠信标测光时的影响, 对所产生的钠信标回波光子数进行了精确标定, 并提出了一种钠信标V星等的计算方法; 在19 W出光功率, 圆偏光状态下获得了最亮的钠信标, 其在大气层上空的光子数流量为9.55×106 photons·s-1·m-2, 对应7.4 V星等。
自适应光学 钠信标 回波光子数 adaptive optics sodium laser guide star returned photons 
红外与激光工程
2018, 47(1): 0106005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!