作者单位
摘要
安徽理工大学电气与信息工程学院, 安徽 淮南 232001
PM2.5 是大气重要污染物之一, 模拟 PM2.5 浓度空间分布对于大气污染防治具有重要意义。将土地利用回归模型 (LUR) 应用到安徽省污染较重的皖北地区, 以监测点为中心, 建立半径分别为 0.5、1、1.5、2、3、4、5 km 的缓冲区, 结合土地利用因子、道路因子、污染源因子、气象因子、高程因子及人口因子共 105 个变量, 建立了该地区四季和年均 LUR 模型, 并通过留一交叉互验, 验证了模型精度。结果表明: 研究区 PM2.5 浓度受草地、湿地、降水量、相关湿度、气压、风速、二级公路、三级公路、废气污染企业、人口数量影响较大。调整 R2 分别为 0.828 (春)、0.731 (夏)、0.831 (秋)、0.775 (冬)、0.892 (年均); 均方根误差 (RMSE) 分别为 6.34 μg·m-3 (春)、7.01 μg·m-3 (夏)、6.28 μg·m-3 (秋)、6.71 μg·m-3 (冬)、5.33 μg·m-3 (年均); 模拟精度 R2 分别为 0.825 (春)、0.730 (夏)、0.834 (秋)、0.772 (冬)、0.897 (年均), 模型表现良好, 解释力强。从模拟的 PM2.5 浓度空间分布可以看出, 不同季节呈现明显不同的空间分布特征, 这与来自北方的大量污染颗粒物、当地的煤矿开采以及秋耕秸秆燃烧等潜在污染源有关。
土地利用回归模型 空间分布 皖北地区 PM2.5 PM2.5 land use regression model spatial distribution Northern Anhui Province 
大气与环境光学学报
2022, 17(3): 347
作者单位
摘要
安徽理工大学 电气与信息工程学院, 安徽 淮南 232001
煤矿开采过程中的水灾害往往带来各种巨大损失, 而对矿井渗水的监测一直比较困难。基于光纤微弯损耗原理和光时域反射(OTDR)技术, 提出了一种针对矿井渗水的检测定位方法。结合膨胀土防水毯(GCL)遇水膨胀的特性, 井壁渗水区的GCL膨胀并传导形变至与之紧贴的光纤, 通过光纤微弯损耗原理获取对渗水情况的检测结果, 同时结合OTDR原理, 可对出现弯曲损耗的形变点即渗水点进行定位。实验证明渗水位置与测量结果基本吻合, 该方法具有较好的定位效果。
矿井渗水 渗水定位 微弯损耗 光时域反射 mine seepage seepage location microbending loss optical time domain reflection 
光通信技术
2020, 44(1): 20
作者单位
摘要
1 安徽理工大学,电气系,安徽,淮南,232001
2 中国科学院安徽光学精密机械研究所,安徽,合肥,230031
为了产生室温下掺镱光纤激光器稳定的多波长激光振荡,采用两个光纤环镜作为线形腔掺镱光纤激光器的端镜,在其中一个环镜中熔接一段保偏光纤构成梳状滤波器,通过优化掺镱光纤长度和腔损耗,实现了室温下1060nm附近稳定的多波长振荡.实验结果表明,在室温下,掺镱光纤存在比较明显的非均匀加宽效应,从而使得激光器的振荡波长数随泵浦功率的增加而增加.
掺镱光纤激光器 多波长振荡 梳状滤波器 保偏光纤 
光电工程
2007, 34(7): 59
作者单位
摘要
1 中国科学院安徽光学精密机械研究所激光技术研究中心, 安徽 合肥 230031
2 中国科学院西安光学精密机械研究所瞬态光学国家重点实验室, 陕西 西安 710068
中国科学院“计划”、国家自然科学基金(60677050,10604066)和国家重点基础研究发展计划(2007CB936603)资助项目。
激光器 掺镱光纤 多波长振荡 均匀加宽 非均匀加宽 
中国激光
2007, 34(10): 1333
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,合肥,230031
2 中国科学技术大学物理系,合肥,230026
采用光纤激光器和放大器结构方案,观察到了高浓度掺镱光纤(YDF)的光子暗化(Photo-darkening)现象.对激光器阈值和输出功率、放大器输出谱的测量结果表明,光子暗化效应导致了高掺杂浓度YDF的功率转换效率随泵浦作用时间的增加而下降,且下降为单调不可逆过程,但随着泵浦时间的增加,这种下降逐渐变缓、功率转换效率最终可趋于稳定.
掺杂浓度 掺镱光纤(YDF) 光子暗化效应(Photo-darkening) 光纤激光器 光纤放大器 
光子学报
2007, 36(1): 26

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!