栗星 1,2†柏晨 1,2,*†李润泽 1彭彤 1[ ... ]姚保利 1,2,**
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
3 Laboratory of Applied Computational Imaging,Centre Énergie Matériaux Télécommunications,Institut National de la Recherche Scientifique,Université du Québec,Québec J3X1P7,Canada
高速成像技术在物理、化学、生物医学、材料科学及工业等众多领域扮演着十分重要的角色。受电荷存储和读取速度的限制,基于电子成像器件的数码相机成像速度难以进一步提高。近年来,随着成像新技术的发展,超高速和极高速光学成像的性能已得到显著提升,具备更高的时间分辨率、空间分辨率及更大的序列深度等。介绍高速成像技术的发展历程,根据成像方式,将近年来具有代表性的新型超高速和极高速光学成像技术分为直接成像和编码计算成像两个类别。分别介绍和讨论各种新型超高速和极高速光学成像技术的概念和原理,并比较各自的优缺点。最后,对这一领域的发展趋势和前景进行展望。本文旨在帮助研究者系统了解超高速和极高速光学成像技术的基本知识、最新研究发展趋势和潜在应用,为该领域科学研究提供参考。
高速成像 超高速成像 极高速成像 时间分辨率 空间分辨率 序列深度 
激光与光电子学进展
2024, 61(2): 0211020
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
空间分辨率是光学显微成像系统的核心指标,根据光学衍射理论,成像系统的空间分辨率由照明光波长与显微物镜的数值孔径共同决定。而在实际成像过程中,根据不同判据得出的显微成像系统分辨率略有差异,需要根据光源的相干性和被观测目标的结构等特征选择合适的判据来准确计算成像系统分辨率。通过理论分析和数值模拟,给出了不同情况下成像分辨率的计算方法,并对比了在相干光源和非相干光源照明下,对双缝目标和双点目标成像时成像分辨率的差异。
光学显微成像 相干光和非相干光照明 分辨率判据 optical microscopic imaging coherent and incoherence light illumination resolution criterion 
红外与激光工程
2022, 51(11): 20220735
周源 1,2李润泽 1于湘华 1,*严绍辉 1[ ... ]姚保利 1,2,*
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安交通大学 生命科学与技术学院 生物医学光子学与传感研究所 生物医学信息工程教育部重点实验室,西安 710049
4 安徽师范大学 物理与电子信息学院,安徽 芜湖 241002
作为电磁波,光场可用振幅、相位和偏振等参量表征,空间光场调控技术通过对这些参量进行调控,生成新颖的空间结构光场。与其它类型调控器件相比,液晶空间光调制器具有衍射效率高、调控单元数目达到百万量级、实时动态调控等优点,已成为空间光场调控的主流器件。介绍了基于液晶空间光调制器的光场调控技术,包括:单参量调控、复振幅调控和多参量联合调控的原理和算法;例举了光场调控技术在全息光镊、光学显微、光信息存储、光学微加工、散射介质后成像、光通信等领域的应用;讨论了该技术面临的问题、发展趋势和发展前景;旨在帮助研究者系统了解基于液晶空间光调制器的光场调控技术的基本知识、最新研究进展和潜在应用,为该领域的科学研究提供参考。
液晶空间光调制器 光场调控 计算全息图 傅里叶全息 空域光场调控 空间频率域光场调控 Liquid crystal spatial light modulators Optical field modulation Computer generated hologram Fourier hologram Optical field modulation in the spatial domain Optical field modulation in the spatial frequency domain 
光子学报
2021, 50(11): 1123001
作者单位
摘要
1 南开大学现代光学研究所, 天津 300350
2 天津市微尺度光学信息技术科学重点实验室, 天津 300350
3 天津市光电传感器与传感网络技术重点实验室, 天津 300350
由于超材料和超表面的亚波长结构单元的形状和尺寸具有很大的设计自由度,可对电磁波的振幅、相位、波前和方向等进行复杂而精确的调控,同时随着结构参数数量的增加,结构设计的时间往往呈指数增长。提出了一种基于反向传播(BP)神经网络快速优化超表面结构的方法,实现了兼具高衍射效率、宽带宽和高角色散等优势的太赫兹介质超光栅。利用有限次数的严格耦合波分析建立的数据集来训练BP神经网络,可准确预测任意结构参数的超光栅衍射光谱,并通过遍历所有结构参数快速筛选出具有最高衍射效率且宽带宽的超光栅,相比传统的遍历计算方法速度提高了一万倍,证明了基于BP神经网络的超表面优化方法的高效性以及精准性,同时为太赫兹波段提供了一种性能优异的衍射元件。
光栅 深度学习 BP神经网络 超光栅 优化 
光学学报
2020, 40(23): 2305001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!