作者单位
摘要
1 宁波大学 机械工程与力学学院 浙江省零件轧制成形技术研究重点实验室, 浙江宁波352
2 浙江大学 机械工程学院 浙江省先进制造技术重点实验室,浙江杭州31007
针对微操作与微装配任务对多维大范围精密定位运动的需求,采用粘滑驱动原理并结合压电柔顺机构设计二自由度、大行程、无耦合并联定位平台。利用桥式机构对内置压电驱动器进行位移放大,并与复合解耦结构配合构成二维柔顺驱动机构。交叉滚柱导轨则连接移动台与驱动机构,并通过预紧螺钉调整接触摩擦力,进而获得良好的粘滑运动特性。采用有限元法建立定位平台的静力学模型,并对位移放大倍数、应力和固有频率进行仿真分析。最后,搭建实验测试系统验证定位平台的输出性能。实验结果表明:在扫描驱动模式下,驱动电压为150 V时,平台xy向的输出位移分别为63.84 μm和62.61 μm,耦合比为0.52%和0.59%,分辨率为6.5 nm和7.2 nm;在步进驱动模式下,驱动电压为120 V时,平台在xy向的单步位移分别为47.31 μm和47.20 μm,耦合比为0.69%和0.73%,x正向、x反向、y正向和y反向的运动分辨率分别为0.49,0.47,0.47和0.42 μm,最大垂直负载为50 N,设计的压电粘滑定位平台满足所需性能要求。
压电驱动 桥式机构 粘滑运动 定位平台 piezoelectric actuation bridge mechanism stick-slip motion positioning platform 
光学 精密工程
2024, 32(1): 62
作者单位
摘要
宁波大学 机械工程与力学学院,浙江 宁波 315211
为了实现大位移行程、无耦合运动的精密定位,设计了一种结构紧凑、工作台面大的x-y-θz三自由度并联压电微动平台。该文首先采用双柔性薄板的柔顺桥式放大机构对微动平台的驱动单元进行了设计,并基于双平行四连杆柔顺机构设计了微动平台的台体,进而获得平台的整体结构。再采用有限元方法对平台的应力、位移放大倍数和模态进行了分析。最后对所设计的微动平台进行实验系统的搭建,并对平台的位移和频率响应特性进行测试。实验结果表明,平台在x方向上的最大输出位移为306.1 μm,耦合率为0.26%;平台在y方向上的最大输出位移为402.3 μm,耦合率为0.14%;在θz方向(即绕z轴)的最大转角为2.72 mrad。平台在x、y、θz方向的位移分辨率分别为10 nm、10 nm、0.1 μrad,固有频率分别为104.1 Hz、130.0 Hz、115.6 Hz。
微动平台 压电驱动 桥式柔顺放大机构 双平行四连杆柔顺机构 micro-positioning stage piezoelectric drive bridge type compliant amplification mechanism double parallel four-link compliant mechanism 
压电与声光
2023, 45(5): 705
作者单位
摘要
宁波大学 机械工程与力学学院, 浙江 宁波 315211
该文提出了一种结构简单紧凑的压电粘滑旋转电机。通过一个力偶式机构设计了定子, 并在此基础上设计出双定子压电粘滑旋转电机, 提升了电机结构的紧凑性。通过在典型锯齿波上改造而成的一种异步驱动方式, 使电机能够实现“增粘减滑”。建立了电机机电-摩擦耦合动力学模型, 制作出电机的样机并进行相应的实验。实验结果表明, 电机输出位移曲线显示出良好的步进特性, 当驱动电压幅值为150 V、频率为900 Hz时, 电机输出的最大单步转角、转速分别为125 μrad和6.3 (°)/s, 最大可承负载为30 g。
压电旋转电机 粘滑驱动 力偶式定子 增粘减滑 动力学模型 piezoelectric rotary motor stick-slip drive force-coupled stator increasing stickiness and reducing slippage dynamic model 
压电与声光
2023, 45(3): 397
作者单位
摘要
宁波大学 机械工程与力学学院, 浙江 宁波 315211
以压电陶瓷驱动器作为动力输入的快速伺服刀架具有输出力大和高频率响应的优点。压电陶瓷驱动器固有的迟滞现象严重影响了快速伺服刀架的输出定位精度。为解决此问题,通过引入归一化Bouc-Wen模型建立前馈控制补偿器,归一化Bouc-Wen模型解决了经典Bouc-Wen模型中存在的参数冗余问题。获得模型参数后,基于其逆模型搭建了前馈补偿器,并在搭建的实验平台上进行了单/双自由度轨迹跟踪性能测试。实验结果表明,对于等幅正弦波信号,经前馈控制环节补偿下快速伺服刀架的最大轨迹跟踪误差为1, 18%,最大轨迹跟踪偏差为2, 61%,证明该文所提出的前馈控制补偿器能提高快速伺服刀架的定位精度。
快速伺服刀架 Bouc-Wen模型 迟滞特性 前馈控制 压电陶瓷驱动器 fast servo tool post Bouc-Wen model hysteresis characteristics feedforward control piezoelectric ceramic driver 
压电与声光
2022, 44(2): 327
作者单位
摘要
宁波大学 机械工程与力学学院, 浙江 宁波 315211
快速伺服刀架能够提供精确、快速的微纳米级运动。为了获得双向和二维运动, 该文研制了一种双向压电驱动的二维快速伺服刀架。该刀架采用对称结构设计, 结合柔顺放大机构和位移解耦机构, 末端执行机构实现较大的输出位移, 同时减小耦合位移。基于伪刚体模型, 建立快速伺服刀架的静力学和动力学模型, 得到机构的输出位移、输出耦合比、最大应力和固有频率。通过有限元仿真验证了模型的正确性。最后, 采用电火花线切割加工快速伺服刀架原型样机, 并搭建了实验测试系统。实验结果表明, 快速伺服刀架在x、y方向的位移放大率分别为3.56和3.57; 输出耦合误差分别为1.26%和1.00%, 装配压电陶瓷驱动器后系统在x、y方向的一阶固有频率均是270 Hz, 系统动态性能良好。
快速伺服刀架 柔顺机构 二维运动 有限元分析 压电陶瓷驱动器 fast servo tool compliant mechanism 2-DOF motion finite element analysis piezoelectric ceramic driver 
压电与声光
2021, 43(1): 88
作者单位
摘要
1 宁波大学 机械工程与力学学院,浙江 宁波 315211
2 浙江大学 机械工程学院浙江省先进制造技术重点实验室, 浙江 杭州 310027
针对压电微操作器的迟滞非线性补偿问题, 采用Prandtl-Ishlinskii(PI)法建立了描述微操作器迟滞非线性特性的迟滞模型, 并设计其前馈控制器。首先通过将系统逆补偿输出线性化, 设计混合灵敏度H∞控制器, 使系统具有较好的动静态特性。其次搭建了由多自由度微动平台和末端柔性操作臂构成的压电微操作器系统, 并进行一系列测控实验。结果表明,基于PI逆模型的前馈控制可以较好地补偿压电微操作器的迟滞非线性, 在最大输出位移125 μm的情况下, 最大迟滞非线性率由21.7%降低至7.4%。同时混合灵敏度H∞控制能以较小的相对控制误差实现对不同类型和频率的参考轨迹跟踪, 甚至微操作器动力学参数发生变化时, 仍然具有较好的控制效果, 证实了所提出控制器的可行性。
微操作器 压电驱动 H∞控制 迟滞模型 前馈控制 micromanipulator piezoelectric actuation H∞ control hysteresis model feedforward control 
压电与声光
2021, 43(5): 651
作者单位
摘要
宁波大学 机械工程与力学学院,浙江 宁波 315211
针对微纳操控技术对微动平台提出的大行程、高精度、多自由度和输出位移解耦等要求,设计了一种基于两级放大机构的xy两自由度双向驱动微动平台。分析了微动平台的运动及放大原理,建立了微动平台结构的理论模型和有限元模型,并对其进行了测试。平台输出特性测试结果表明,微动平台的放大倍数可达8.5倍,与仿真值误差为6.9%,同时耦合位移控制在0.82%内;平台在150 V三角波信号驱动下,x方向上正、负向输出位移分别为84.6 μm、-84.2 μm;y方向上正、负向输出位移分别为85.0 μm、-84.5 μm。不同频率下的最大位移只在极小范围内波动,在x、y方向的正、负向输出具有很高的相似性和稳定性,实现了双向驱动,大行程、高精度的目的。
微动平台 柔顺结构 双向驱动 二自由度 有限元分析 micro motion stage compliant structure two way drive two degrees of freedom finite element analysis 
压电与声光
2020, 42(2): 252

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!