Author Affiliations
Abstract
1 Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3 Nokia Shanghai Bell Co., Ltd., Shanghai 201206, China
4 College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution. In this work, an all-optical diffractive neural network (DPENet) based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed. Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges. Simulation results show that DPENet achieves F-scores of 0.9308 (MNIST) and 0.9352 (NIST) and enables real-time edge detection of biological cells, achieving an F-score of 0.7462.
diffractive neural network edge detection phase objects 
Chinese Optics Letters
2024, 22(1): 011102
成科 1,2,*胡晓楠 1,2贺瑜 1,2孟维佳 1,2[ ... ]方心远 1,2
作者单位
摘要
1 上海理工大学光子芯片研究院, 上海 200093
2 上海理工大学光电信息与计算机工程学院人工智能纳米光子学中心, 上海 200093
完美涡旋光束 (POVB) 是径向强度分布和半径均与光束轨道角动量 (OAM) 状态无关的一类涡旋光, 已被应用于光学操控、光通信、激光材料处理等领域。其中, POVB 轨道角动量状态的探测是关键且有挑战的技术。本研究通过并行梯度下降算法, 构建了光学衍射神经网络 (DNN), 实验上实现了轨道角动量阶数在-50~+50 范围内的 POVB 的识别。在此过程中, 衍射转换效率可达 58%。本研究为 POVB 的 OAM 探测提供了新的思路, 在 POVB 的各类应用中均存在潜在应用价值。
傅里叶光学 轨道角动量探测 光学衍射神经网络 完美涡旋光束 Fourier optics orbital angular momentum detection optical diffraction neural network perfect optical vortex beam 
量子电子学报
2022, 39(2): 262
栾海涛 1,2陈希 1,2张启明 1,2蔚浩义 1,2顾敏 1,2,*
作者单位
摘要
1 上海理工大学光子芯片研究院, 上海 200093
2 上海理工大学光电信息与计算机工程学院人工智能纳米光子学中心, 上海 200093
人工智能技术,特别是人工神经网络的创新引领了许多领域的应用革命,如网络搜索、计算机识别和语言、图像的识别技术。近年来纳米光子学的发展为传统的人工神经网络技术,特别是光学神经网络的发展带来了全新的物理视角以及截然不同的实现方法。一方面,纳米光子学是一门研究光与材料在纳米尺度相互作用的科学,可以带来全新的技术,如超分辨光学加工技术和超分辨光学成像技术,进而推动微纳尺度上多种功能的光学神经网络的实现。另一方面,纳米光子学中光子传播的多频段、高速度、低功耗的特点,促使了光学神经网络向着小体积、高密度、低功耗的方向发展。人工神经网络自身的发展也促使神经网络算法(如逆向设计、深度学习)在纳米光子学器件的设计中发挥前所未有的作用,以满足纳米光子学器件对自身功能、体积、集成度、计算功能的日益增长的要求。以神经网络的发展为起点,阐述人工神经网络特别是光学神经网络的发展趋势,以及人工神经网络与纳米光子学相互促进的发展历程。
光学器件 人工智能 人工神经网络 光学神经网络 纳米光子学 光学人工智能 
光学学报
2021, 41(8): 0823005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!