王文君 1,2,*潘爱飞 1,2梅雪松 1,2
作者单位
摘要
1 西安交通大学机械工程学院,陕西 西安 710064
2 西安交通大学机械制造系统工程国家重点实验室,陕西 西安 710064
超快激光加工可以实现常规加工方式难以实现的高、精、尖、硬、难等加工,已成为精密精细制造技术的最佳选择。超快激光加工理论研究是超快激光微纳可控制造的基石,笔者着重介绍了超快激光作用下的电子动力学行为以及光子-电子-离子耦合过程中原子尺度的理论研究,探讨了目前针对超快激光加工的多物理场跨尺度耦合模型,分析了这些模型的仿真结果及局限性,总结了超快激光加工理论模型所面临的挑战,并对未来的研究重点进行了展望。
超快光学 超快激光 密度泛函理论 电子激发 双温方程 分子动力学 流体力学 耦合模型 
中国激光
2024, 51(4): 0402407
作者单位
摘要
中国激光
2022, 49(10): 1002000
李江 1,*高筱钧 1付作立 1王文君 2,**[ ... ]黄玉祥 1
作者单位
摘要
1 西北农林科技大学机械与电子工程学院,陕西 杨凌 712100
2 西安交通大学机械制造系统工程国家重点实验室和陕西省智能机器人重点实验室,陕西 西安 710054
作为一种典型的微纳光学元件,仿生复眼微视觉系统有机结合了光子学与微纳米技术的前沿科学成果,在机器人视觉导航、无人驾驶、微型飞行器系统等前沿领域具有广阔的应用前景。超快激光加工作为一种先进的制造技术,具有真三维加工、适用多种材料、微纳加工精度等优异特征,已成为制造多级结构仿生复眼视觉系统的理想工具。本文介绍了自然界昆虫复眼的结构特点,阐述和分析了各类型仿生复眼的超快激光加工研究进展,包括平面微透镜阵列、超疏水复眼透镜和大视场复眼透镜,最后分析了超快激光加工技术制备复眼透镜存在的问题和发展趋势,为仿生复眼视觉系统的进一步研究与开发提供有效参考。
激光技术 超快激光 人工仿生复眼 平面微透镜阵列 超疏水复眼透镜 大视场复眼透镜 
中国激光
2022, 49(10): 1002704
赵万芹 1,2梅雪松 1,2,*杨子轩 1,2
作者单位
摘要
1 西安交通大学机械工程学院,陕西 西安 710064
2 西安交通大学机械制造系统工程国家重点实验室,陕西 西安 710064

电子器件的高质量和高密度互联对激光加工硬脆电子陶瓷基板表面孔的质量提出了更高的要求。综述了长脉冲毫秒激光、短脉冲纳秒激光和超快激光加工的电子陶瓷基板孔的形貌特征,主要包括孔的表面形貌特征(如孔口圆度、孔表面喷溅物、孔表面微裂纹和孔表面热影响区等)及孔的侧壁形貌特征(如孔的锥度、孔侧壁重铸层和孔侧壁表面微裂纹等)。

激光技术 电子陶瓷基板 孔的形貌特征 毫秒激光 纳秒激光 超快激光 
中国激光
2022, 49(10): 1002403
廖恺 1,2王文君 1,2梅雪松 1,2刘斌 1,2
作者单位
摘要
1 西安交通大学 机械制造系统工程国家重点实验室,西安70054
2 西安交通大学 机械工程学院,西安710049
提出了一种基于光丝效应的利用高重频飞秒激光结合高速扫描振镜对200 μm石英玻璃进行单次直接切割的方法。优化加工工艺参数,实现了薄石英玻璃的快速高质量切割,加工速度可以达到10 mm/s,崩边小于7.5 μm,断面粗糙度小于1 μm。该方法实现了薄玻璃切割效率和质量的同步提升,在激光加工领域有较好的应用前景。
激光光学 激光成丝 飞秒激光 石英玻璃 玻璃切割 Laser optics Laser filamentation Femtosecond laser Quartz glass Glass dicing 
光子学报
2021, 50(6): 3
任笑莹 1,2,3,4崔健磊 1,2,*陆洋 3,4梅雪松 1,2
作者单位
摘要
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
2 西安交通大学陕西省智能机器人重点实验室, 陕西 西安 710049
3 香港城市大学机械工程学院, 香港 999077
4 香港城市大学深圳研究院纳米制造实验室, 广东 深圳 518057
纳米连接技术是纳米元器件与微系统及宏观系统整合的关键技术之一。稳定的器件性能取决于可靠的纳米互连结构,评估纳米互连结构的力学性能及电学性能对于预测电子器件的失效模式至关重要。本文结合目前不同纳米连接技术及连接界面的特点,对不同材料从单纳米焊接接头到宏观互连结构的电/力学性能特征进行了总结与展望,通过对互连结构焊接及变形机制、焊接强度、疲劳特性及电学性能的探讨,展现了激光诱导等离子体自限性低温焊接在未来纳米器件及柔性电子器件制造中的巨大潜力。
光学制造 纳米连接 冷焊 激光诱导等离子体 电学性能 力学性能 
中国激光
2021, 48(8): 0802021
梅欢欢 1,2,3崔健磊 1,2,*程杨 1,2何小桥 3梅雪松 1,2
作者单位
摘要
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
2 陕西省智能机器人重点实验室, 陕西 西安 710049
3 香港城市大学土木及建筑工程系, 香港 999077
随着半导体集成电路的高速发展,不断减小的半导体器件的特征尺寸成为制约电子产业发展的主要瓶颈,进而催生了对新型半导体材料越来越多的需求。碳纳米管因其独特的电学、力学、化学稳定性等成为了理想的下一代电导线材料。然而,在碳纳米管与金属异质电极之间建立可靠且有效的连接较难实现,这使碳纳米管的应用面临着巨大的挑战。针对这一问题,详细概述了碳纳米管与金属电极之间的几何接触形式、界面接触行为、互连技术及其电学性能的最新研究进展。
材料 激光 半导体集成 碳纳米管 金属电极 异质连接 电学性能 
中国激光
2021, 48(8): 0802023
梅欢欢 1,2,3崔健磊 1,2,*程杨 1,2何小桥 3梅雪松 1,2
作者单位
摘要
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
2 陕西省智能机器人重点实验室, 陕西 西安 710049
3 香港城市大学土木及建筑工程系, 香港 九龙 999077
碳纳米管因其独特的电学特性及一维纳米结构成为取代硅材料的重要电子材料,利用碳纳米管制备的微纳米电子器件具有尺寸小、响应快、功耗低等优点,但如何实现碳纳米管与金属电极之间可靠及有效的连接一直是构筑碳纳米管电子器件的难点与重点。针对该问题,首先,采用飞秒脉冲激光辐照技术诱导多壁碳纳米管与不同金属电极(金、镍)产生不同形式的连接;然后,通过测试互连前后多壁碳纳米管与金属电极之间的伏安特性曲线和界面接触电阻验证了该连接方法的可重复性及有效性,为后续大规模制备高性能碳纳米管场效应晶体管提供了一定的基础。
飞秒激光 多壁碳纳米管 金属电极 异质连接 电学性能 
中国激光
2021, 48(8): 0802019
作者单位
摘要
1 西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
2 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
碳化硅陶瓷基复合材料(CMC-SiC)具有密度低、强度高、耐高温、抗腐蚀等优点,在航空航天领域具有广泛的应用潜力。但是CMC-SiC属于具有超高硬度且各向异性的难加工材料,常规加工技术难以胜任这种新型材料的优质高效加工。激光加工凭借加工质量高、非接触加工、输入热量低、适用范围广、易于和数控技术结合实现自动化等优势,有望成为CMC-SiC材质构件精密制造的主流技术。本文从CMC-SiC与激光的相互作用机理出发,分析了激光加工CMC-SiC中出现的典型热致缺陷,阐述了超短脉冲激光在CMC-SiC精密加工中展现的优势。在此基础上,指出了CMC-SiC激光加工技术的发展趋势,旨在为新型航空航天CMC-SiC材质构件的精密制造提供理论依据与技术参考。
激光光学 激光加工 碳化硅陶瓷基复合材料 作用机理 热致缺陷 超短脉冲激光 
中国激光
2020, 47(6): 0600002
作者单位
摘要
1 西安交通大学机械制造系统国家重点实验室, 陕西 西安 710049
2 上海工程技术大学材料工程学院, 上海 201620
毫秒和纳秒激光以其高可靠、高效率、低成本和可加工硬脆难加工材料的独特优势,成为加工氧化铝和氮化铝陶瓷的首选,在电子陶瓷基板表面孔的工业化加工中具有不可替代的作用。介绍了毫秒和纳秒激光加工作为电子基板的陶瓷材料的去除机理,如材料烧蚀阈值、光热作用和光化学作用等,讨论了毫秒和纳秒激光加工参数、加工环境等因素对陶瓷材料表面孔加工尺寸(如直径、深度和锥度等)的影响规律,总结了目前陶瓷基板表面激光孔加工工业化应用面临的问题,并对其未来的发展方向进行了展望。
激光技术 电子陶瓷基板 氧化铝 氮化铝 毫秒激光 纳秒激光  
中国激光
2020, 47(5): 0500011

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!