作者单位
摘要
1 吉林大学生物与农业工程学院, 吉林 长春 130022
2 吉林大学公共卫生学院, 吉林 长春 130021
斑病害在全球玉米产区均有爆发, 严重影响玉米产量与品质, 是一种常见的叶类疾病。 荧光光谱技术能够快速、 无损、 准确地反映作物生理信息, 动态检测其逆境响应规律。 以玉米为研究对象, 基于荧光光谱和生理参数(SPAD和Fv/Fm)融合分析, 探究玉米生理参数对不同程度斑病害的响应规律, 构建荧光光谱反演模型。 首先, 利用相关分析与峰值分析筛选荧光光谱的敏感波段, 采用多元散射校正(MSC)、 标准正态变量变换(SNV)、 多项式平滑(S-G)、 FD光谱一阶导数、 SD光谱二阶导数等5种预处理及MSC-SG-FD, MSC-FD-SG, SNV-SG-FD, SNV-SG-SD等4种建模组合方法, 以相关系数R2和均方根误差RMSE为模型效果评价指标, 确定荧光光谱反演生理参数模型的最优方法。 结果表明: 不同斑病害程度下荧光光谱特性的整体变化趋势一致, 但强度差异显著, 在波段600.000~800.000 nm内, 光谱反射率会出现明显的峰中心, 达到极值。 在波段900.000 nm之后, 反射率趋于平稳, 特征明显减少。 对于潜伏期叶片, SPAD与Fv/Fm的建模最优方法均为SNV-SG-FD, Rc为0.985 2和0.976 8, RMSEC为1.59和2.85。 对于早期发病叶片, SPAD的建模最优方法为SNV-SG-FD, Rc为0.949 7, RMSEC为3.79, Fv/Fm的建模最优方法为SNV-SG-SD, Rc为0.943 8, RMSEC为0.011 7。 模型预测性精度较高, 能够实现对早期斑病害玉米叶片SPAD和Fv/Fm的精准预测, 为玉米斑病害潜伏期与病害早期的生理信息监测提供参考依据。 研究结果可应用于大田作业, 提升田间精细化、 智能化管理水平, 为玉米高产、 优质、 优生提供理论依据与技术支撑。
玉米斑病害 荧光光谱 生理参数 建模方法 病害胁迫 Maize spot disease Fluorescence spectroscopy Physiological parameters Modeling methods Disease stress 
光谱学与光谱分析
2023, 43(12): 3710
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
用光谱信息精准、 高效地检测水稻叶片叶绿素含量, 对诊断和优化水稻叶片氮素营养、 开发和优化稻田氮素追肥系统、 监测和评价水稻病虫害具有重要的实际意义。 针对单纯采用机器学习模型反演水稻叶片叶绿素含量模型精确性和稳定性差的问题, 以粳稻吉粳88为研究对象, 通过网格试验获得分蘖期等关键生育期的叶片表型高光谱数据和相对叶绿素含量。 选取核极限学习机(KELM)为基础建模模型, 提出了一种先依据基础KELM建模效果选择预处理方法后, 再利用仿生优化算法对所选预处理组合所对应的KELM模型的训练过程进行优化的新思路, 以提高模型预测精度。 首先, 对光谱数据的各类预处理方法展开研究, 通过对4类预处理方法进行全排列组合共得到72种预处理组合。 利用连续投影算法(SPA)选择特征波段输入KELM模型以筛选较优预处理组合。 依据建模效果, 预处理组合CWT+MMS, CWT+MSC+SG+SS和CWT+SS所对应KELM的测试集决定系数(R2p)较高, 分别为0.850, 0.835和0.828。 其次, 为使KELM模型在保证稳定性和泛化性的前提下性能达到最优, 引入哈里斯鹰优化算法(HHO), 通过模拟鹰群在捕食时的合作行为和追逐策略, 自动最优调节上述三种KELM模型参数, 使得HHO-KELM模型R2p分别为0.957, 0.867和0.858, 模型精度得到有效提升, 最高提升10.7%。 通过研究, 证明了HHO算法优化机器学习模型反演水稻叶片叶绿素含量的可行性, 为东北粳稻叶绿素含量的测定和评估提供了有力的参考和借鉴。
哈里斯鹰优化算法 核极限学习机 高光谱 叶绿素含量 Harris Hawk optimization algorithm Nuclear limit learning machine Hyperspectral Chlorophyll content 
光谱学与光谱分析
2023, 43(1): 93
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
利用高光谱反射率光谱的特征波段构建光谱指数, 建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。 为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型, 分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据, 利用小波分析法对原始光谱反射率曲线进行降噪处理, 并对基于积分运算的光谱指数NAOC进行简化, 获得了基于双波段简化运算的优化光谱指数。 利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、 1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数, 获得了以积分限(a, b)为横、 纵坐标的相关系数二维矩阵, 并绘制相关性等势图, 得到相关系数最高的3个波段组合: R(641, 790)(0.872 6), R(653, 767)(0.871 7)和R(644, 774)(0.871 6), 计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值, 按照2:1的比例划分为建模集和验证集, 建立了三种水稻叶片SPAD反演模型: 偏最小二乘回归(PLSR)、 支持向量机(SVM)和BP神经网络模型。 结果显示: 利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79, 归一化均方根误差NRMSE则小于5.4%。 其中BP神经网络相对于其他两种模型具有较高的拟合度, 预测精度也相对较高, 建模集R2=0.842 6, NRMSE=5.152 7%; 验证集R2=0.857, NRMSE=4.829 9%。 总体来看, 基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的; 对比分析3种模型反演结果发现, BP神经网络对水稻叶片SPAD的反演效果较好。 该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。
水稻 优化光谱指数 高光谱 BP神经网络 Rice SPAD Optimized spectral index Hyperspectral BP neural network SPAD 
光谱学与光谱分析
2022, 42(4): 1092
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
光温环境胁迫是影响作物优质高产的一个主要制约因素, 传统的作物胁迫监测, 敏锐性不足、 耗时费力且多为有损检测。 近年来随着信息技术的快速发展, 高光谱技术能够快速无损的获取作物生理信息, 并对逆境胁迫响应进行动态监测, 为现代农业的精准化生产和智能化决策提供了数字化支撑, 对实现传统农业向精准化、 数字化的现代农业转变具有重要意义。 以玉米苗期为研究对象, 获取不同光温环境下叶片的高光谱数据和生理参数, 探究玉米苗期叶片对不同光温环境的响应规律, 进行高光谱差异性分析, 并构建生理参数的高光谱反演模型。 利用相关分析法筛选光谱敏感波段, 采用多元散射校正(MSC)、 标准正态变量变换(SNV)、 Savitzky-Golaay(S-G)平滑相结合的预处理方法, 分别与偏最小二乘回归法(PLS)、 主成分回归法(PCR)、 逐步多元线性回归法(SMLR)三种建模方法组合, 以模型相关系数和均方根误差作为模型效果评价指标, 探索高光谱反演叶片生理参数模型的最优方法。 结果表明: 不同光温环境下玉米的高光谱特性在整体上变化趋势一致, 但仍存在差异, 在500~700 nm波段内, 光谱反射率的升高表明光强的增强; 在760~900 nm波段内, 光谱反射率的升高表明温度的增强; 且光温胁迫环境的变化, 均可反映在高光谱特性上, 波段760~900 nm内光谱的反射率在高温胁迫环境下较高, 在弱光胁迫环境下较低, 在低温胁迫环境下反射率显著降低; 所构建的SPAD和Fv/Fm的反演模型中, 建模最优方法为PLS-MSC-SG, 模型验证集相关系数分别为0.958和0.976, 训练集相关系数分别为0.979和0.995。 模型的预测性精度较高, 表明利用高光谱技术, 可以实现光温环境胁迫下玉米植株的定量监测, 提高田间精细化管理水平, 为玉米优质高产的智能化管理提供参考依据。
玉米苗期 光温耦合 高光谱数据 环境胁迫 Corn seedling Light-temperature coupling Hyperspectral data Environmental stress 
光谱学与光谱分析
2021, 41(11): 3545

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!