作者单位
摘要
1 青岛农业大学理学与信息科学学院, 山东 青岛 266109
2 中国海洋大学环境科学与工程学院, 山东 青岛 266100
3 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
溢油覆盖度的估测是海洋溢油探测与灾害评估的重要内容, 受航空航天传感器地面分辨率的限制, 准确探测溢油覆盖度比较困难。 在海洋风浪及破碎波作用下, 溢油往往呈条带状分布。 获取的高光谱数据中存在大量的油、 水混合像元; 传统图像分割方式计算溢油面积存在偏差, 且受传感器角度、 高度等影响, 光谱变异明显, 传统端元提取方法很难找到纯像元光谱。 提出了一种通过分区混合端元计算海洋溢油覆盖度的探测方法。 首先对影像进行分区并使用N-FINDR算法进行端元预选; 然后再利用独立分量分析(ICA)方法进行端元精选, 按照负熵最大输出得到候选端元, 并将地面同步参考光谱作为约束引入相似性溢油端元识别; 最后基于非负矩阵分解方法(NMF)求取端元丰度, 通过太阳耀斑区的修正, 得到真实的溢油覆盖度。 分区混合端元的提取较好的解决了全局端元变异及环境适应性差的问题, 使精选后的端元具有更好的环境鲁棒性。 为更好地衡量该算法精度, 采用仿真数据与真实高光谱影像数据相结合进行实验验证。 仿真实验中, 人工设定溢油丰度, 使用均方根误差(RMSE)和丰度估计误差对比评估估计丰度与设定丰度之间的差别, 并设计了算法适应性和抗噪实验。 结果表明采用MNF和ICA两种高光谱压缩方法, 丰度估计误差均低于3%, 重构图像的最小均方根误差RMSE最高为0.030 6, 且具有较好的抗噪能力, 验证了该算法的有效性。 真实实验中, 使用2011年山东长岛溢油8景机载高光谱影像数据为真实测试数据, 由于真实遥感数据往往缺失地面同步丰度数据, 导致对算法精度进行评价比较困难, 使用仿真数据交互验证与目视解译数据相结合的方法进行精度评价, 通过耀斑区修正后估测的机载高光谱成像总的溢油覆盖面积为1.17 km2, 溢油覆盖度为22.85%, 与现场人工估测面积偏差为2.15%, 明显高于传统方法。 受海洋破碎波、 光谱变异性影响, 和航空航天遥感器地面分辨率的限制, 海洋溢油遥感中单个像元进行丰度解析是一个难题。 基于亚像元丰度分解思想, 讨论了海洋溢油覆盖度的问题, 提出一种较为完善的海洋溢油覆盖度的计算办法, 通过仿真数据和实际的高光谱溢油数据进行了方法的验证, 实现了较为客观的自动化溢油覆盖度(丰度)探测方法, 可以较为准确的估测海洋溢油的覆盖度, 对溢油遥感面积的业务化探测具有积极意义。
海洋溢油 覆盖度计算 高光谱图像 分区混合端元提取 Oil spills Coverage rate calculation Hyper-spectral imagery Sub-quadratic mixture End-members extraction 
光谱学与光谱分析
2019, 39(5): 1563
作者单位
摘要
1 中国海洋大学环境科学与工程学院海洋环境与生态教育部重点实验室, 山东 青岛 266100
2 青岛农业大学理学与信息科学学院, 山东 青岛 266109
3 山西工程技术学院信息工程与自动化系, 山西 阳泉 045000
4 国家海洋局北海环境监测中心, 山东 青岛 266033
从土壤速效钾光谱中挖掘关键特征较为困难, 导致高光谱反演模型预测精度较低。 针对此问题, 提出了一种混合式随机森林特征选择算法。 首先采用封装式特征选择方法进行特征预选, 快速去除冗余并保留相关特征, 然后再利用改进的随机森林特征选择算法对预处理后的特征进行精选, 通过增大关键特征与冗余特征的区分度以及采用迭代特征选择的方式, 使精选后的特征具有更好的鲁棒性与区分性, 较好的解决了土壤速效钾高光谱反演模型精度较低的问题。 为了验证所提出算法的有效性, 选取了青岛市大沽河流域具有代表性的124个土壤样品为实验对象, 利用提出的算法从2 051个原始波段选出含有13个敏感波段的最优光谱子集建立土壤速效钾反演模型, 并与现有特征选择算法所建模型进行对比分析。 结果表明: 该算法构建的回归模型具有较低的预测均方根误差RMSEP(9.661 5), 较高的相关系数r(0.936 9)和预测分析相对误差RPD(2.14)。 混合式随机森林特征选择算法以较少的特征波长数实现了较好的预测效果, 可为土壤养分实时光谱传感器的设计提供一定的理论依据。
土壤速效钾含量 高光谱 特征波长选择 混合式特征选择 随机森林 Soil available potassium content Hyperspectral Characteristic wavelength selection Hybrid feature selection Random forests 
光谱学与光谱分析
2018, 38(12): 3883

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!