作者单位
摘要
北京工业大学应用数理学院微纳信息光子技术研究所, 北京 100124
表面增强拉曼散射(SERS)光谱技术是一种高灵敏度的检测技术, 已在社会发展的多个领域显示出潜在的应用前景。 SERS活性基底的大面积、 低成本、 可控制备是表面增强拉曼散射光谱学研究领域的热点之一。 利用溶液法将直径小于5 nm的金纳米团簇旋涂成膜, 调控退火温度和时间, 将金纳米团簇融合组装成随机分布的金纳米岛。 由于融合组装过程在150~210 ℃范围缓慢, 控制条件可实现具有高密度增强“热点”的SERS基底, 方法简单、 成本低廉、 面积大、 均匀性高。 我们利用该方法可重复性获得了性能优良的SERS基底。 该基底对表面吸附的单分子层, 具有强烈的表面增强拉曼散射光谱响应, 150~210 ℃退火样品的宏观增强因子106~107量级。 研究表明: 相同条件下150~180 ℃退火, 金纳米团簇首先融合成直径10~20 nm细小金纳米岛; 退火温度190~210 ℃时, 形成10~20 nm细小金纳米岛与50~70 nm金纳米岛混合并存的现象。 拉曼光谱表征显示: 大、 小金纳米岛混合并存样品的宏观增强因子高于细小金纳米岛组成的样品。 经220 ℃退火后, 金纳米团簇完全融合成直径50~100 nm的金纳米岛, 岛间距也随之增大, 导致纳米岛之间的电磁场强度呈指数衰减, 220 ℃退火的样品具有较低的增强因子。 本论文揭示了金纳米团簇的缓慢自组装机制, 分析了金纳米岛的形貌与表面增强拉曼散射光谱的关系, 为该基底的应用研究奠定基础。
表面增强拉曼散射 金纳米团簇 金纳米岛 自组装 Surface enhanced Raman scattering Gold nanocluster Goldnanoislands Self-assembling 
光谱学与光谱分析
2018, 38(1): 87

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!