作者单位
摘要
1 新疆师范大学物理与电子工程学院新疆发光矿物与光功能材料研究重点实验室,新疆 乌鲁木齐 830054
2 新疆师范大学物理与电子工程学院新疆矿物发光材料及其微结构实验室,新疆 乌鲁木齐 830054
3 新疆师范大学化学化工学院,新疆 乌鲁木齐 830054
采用高温固相法,通过阳离子替代的实验策略,制备出系列窄带发射且颜色可由深黄色调至绿色的K2-xNaxZn0.94SiO4∶0.06Mn2+ (0≤x≤2)荧光粉。用X射线粉末衍射仪对样品的物相进行表征,通过扫描电子显微镜和能量色散谱测试对样品的形貌和元素分布进行分析。结果表明,成功地合成了纯相且元素分布均匀的K2-xNaxZn0.94SiO4∶0.06Mn2+ (0≤x≤2)荧光粉。在蓝光激发下,随着Na+离子逐渐代替K+离子,K2-xNaxZn0.94SiO4∶0.06Mn2+ (0≤x≤2)荧光粉的发光强度逐渐增强,原荧光粉的发光强度得到有效提高的同时发光颜色由深黄色调至绿色。在427 nm激光的激发下:当x=0.8时,K1.2Na0.8Zn0.94SiO4∶0.06Mn2+荧光粉发光最强;当x=2.0时,即K+完全被Na+替代,Na2Zn0.94SiO4∶0.06Mn2+荧光粉发射出中心波长为517 nm、半峰全宽为32 nm的绿光,相较于商用β-SiAlON∶Eu2+绿色荧光粉,其半峰全宽更窄。
材料 过渡金属掺杂材料 K2-xNaxZn0.94SiO4∶Mn2+(0≤x≤2) 窄带绿光发射 颜色调控 液晶显示背光源 
光学学报
2023, 43(11): 1116001
作者单位
摘要
新疆师范大学 物理与电子工程学院 新疆发光矿物与光功能材料研究重点实验室实验室,乌鲁木齐 830054
采用高温固相法成功合成了新型 Mg2+ 掺杂 Na2Zn3Si2O8:Er3+ 荧光粉,研究了其物相结构、上转换发光特性以及热稳定性和单色性。研究结果表明,Mg2+ 离子的掺杂对 Na2Zn3Si2O8:Er3+ 晶体结构没有影响,并且在 980 nm 激发下出现了 Er3+ 离子的绿色和红色特征发射带,Mg2+ 离子的掺入使Er3+ 离子在 661 nm 处的红色发射强度提高了 16 倍,这归因于随着掺杂 Mg2+ 离子 CO32- 基团和 OH- 基团数量的逐渐减少,无辐射跃迁几率减少,最终导致发光强度的增强。通过热稳定性研究发现,Na2Zn3Si2O8:3%Er3+、1%Mg2+ 在 25 ℃~250 ℃ 温度范围内表现出较好的热稳定性,并随着温度的升高样品呈橙红色发光。优化后的样品在固态照明领域有潜在应用价值。
硅酸盐 上转换发光材料 高温固相法 Na2Zn3Si2O8:Er3+,Mg2+荧光粉 固态照明 Silicate Up-conversion luminescence Solid-phase method Na2In3Si2O8 Er3+,Mg2+ phosphor Solid-state lighting 
光子学报
2022, 51(9): 0916001
作者单位
摘要
1 新疆师范大学物理与电子工程学院,新疆 乌鲁木齐 830054
2 新疆发光矿物与光功能材料研究重点实验室,新疆 乌鲁木齐 830054
为了提高Sm3+在CaMgSiO4中的发光性能,采用高温固相法制备了Li+作为电荷补偿剂掺入CaMgSiO4∶Sm3+的硅酸盐发光材料。实验结果表明,所制备的CaMgSiO4x Sm3+y Li+样品均为纯相,Sm3+和Li+的掺入并没有导致晶体结构的改变。在400 nm近紫外波长激发下,CaMgSiO4∶Sm3+的发射峰分别位于562、576、601、650 nm处,这是由Sm3+的4f-4f跃迁引起的。此外,从共掺杂样品的光谱中可以看出Li+的掺入明显提高了Sm3+的发光强度和发射峰积分面积。荧光粉的色坐标在红色区域(0.605,0.394)且色纯度高达93.3%。当温度升到150 ℃时,发射峰的峰值强度保持在室温时的73.5%,这表明该荧光粉具有较好的热稳定性。以上结果表明,该荧光粉在固体照明领域具有潜在的应用前景。
材料 CaMgSiO4∶Sm3+,Li+荧光粉 Li+电荷补偿剂 色纯度 发射峰积分面积 热稳定性 
激光与光电子学进展
2022, 59(13): 1316002
作者单位
摘要
1 新疆师范大学物理与电子工程学院新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
2 新疆师范大学物理与电子工程学院新型光源与微纳光学实验室, 新疆 乌鲁木齐 830054
采用高温固相法制备了一系列Dy 3+,Sm 3+共掺杂的KAlSiO4荧光粉材料。实验结果表明,少量Dy 3+,Sm 3+的掺入没有改变KAlSiO4的晶体结构。当用Dy 3+的特征激发波长激发KAlSiO4∶1%Dy 3+,w% Sm 3+时,发射光谱显示,样品中存在从Dy 3+到Sm 3+的共振非辐射能量传递,同时色坐标移动很小,并发生了528 nm处的红移和713 nm处的蓝移现象;当用Sm 3+的特征激发波长激发KAlSiO4∶1.5% Sm 3+,v% Dy 3+时,发射光谱与KAlSiO4∶1.5% Sm 3+发射光谱相似,没有出现Dy 3+的特征发射峰,但Sm 3+在651 nm处的发光强度提高了6.5倍。这说明没有发生从Sm 3+到Dy 3+的能量回传,Dy 3+的引入促进了晶格的匹配,使得Sm 3+的发光强度得到大幅增强。通过理论计算得出从Dy 3+到Sm 3+的能量传递效率最高可达52%,能量传递相互作用是电四级-电四级相互作用。荧光粉的色坐标均在(0.41,0.51)附近,位于黄绿色区域。386 nm激发下的内量子产率从25.8%逐渐提高到42.6%。
材料 Sm 3+荧光粉 高温固相法 能量传递 内量子产率 
激光与光电子学进展
2020, 57(21): 211601
作者单位
摘要
新疆师范大学新疆矿物发光材料及其微结构实验室, 新型光源与微纳光学实验室, 新疆 乌鲁木齐 830054
硅铝酸盐由于其化学性质稳定、 原材料易得, 是发光材料的一种有效基质, 所以受到广泛关注。 其中, 硅铝酸锶(Sr2Al2SiO7)属于四方晶系, 具有稳定的晶体学结构。 Sm3+作为一种常用的激活剂, 其特征峰在波段300~750 nm内都有分布, 有些特征激发峰位于近紫外光区, 在近紫外区有强的吸收。 因此, 以Sr2Al2SiO7为基质、 Sm3+为激活剂可以制备出符合LED要求的红色荧光粉。 本工作采用高温固相法合成一系列Sr2-x-yAl2SiO7∶x%Sm3+, y%Li+荧光粉。 通过X射线衍射(XRD)、 光致荧光光谱(PL)、 绝对量子效率测量系统对样品的晶体结构、 发光特性以及内量子效率进行表征和测量, 并且对样品的XRD进行精修, 色纯度计算。 结果表明: 合成样品均为单相Sr2Al2SiO7, 掺杂Sm3+和电荷补偿剂Li+后, 没有引起相变。 相对于其他阳离子Sm3+(r=1.079 )、 Li+(r=0.920 )的半径与Sr2+(r=1.260 )半径最为相近, 因此更容易替代Sr2+的格位, 并且两种离子半径比Sr2+小而使得样品晶体结构参数a, b, c和v逐渐减小。 样品的最佳激发峰在403 nm处, 相比于Ca3Y2(Si3O9)2∶Sm3+的激发峰出现了3 nm蓝移, 表明样品在近紫外光下有较强的吸收, 这种长紫外波长的光有利于在照明领域的应用。 在403 nm近紫外光激发下, 可以看出, 在500~750 nm范围内, Sm3+的发射峰位于564 nm(4G5/2→6H5/2), 601 nm(4G5/2→6H7/2), 648 nm(4G5/2→6H9/2)和713 nm(4G5/2→6H11/2), 其中601 nm发射峰强度最大, 使样品呈现强烈的橙红色光。 发射峰在607与618 nm处出现劈裂现象, 是因为晶体场的相互作用引起了能级劈裂。 单掺Sm3+的发射光谱强度随着浓度的增加先增大后减小, 当掺杂浓度为2%时发光强度最大。 利用Blasse提出的能量传递临界距离公式, 计算得出临界距离RC≈19.734 , 从而说明了浓度猝灭原因是Sm3+之间的多级相互作用。 根据Dexter理论, 计算出多极相互作用函数θ≈6, 表明Sr2-xAl2SiO7∶x%Sm3+的浓度猝灭机理是电偶极-电偶极(d-d)相互作用。 为进一步提高发光强度, 掺杂了电荷补偿剂Li+, 使晶体内部电荷达到平衡。 实验结果表明, Li+最佳掺杂浓度为2%, 与未加入电荷补偿剂相比, 发光强度提高了2倍并测试其内量子效率为43.6%。 荧光粉色坐标均在(0.60, 0.39)附近, 位于橙红色区域, 具有较高色纯度(约92.2%)。 该荧光粉在三基色白光LED中的红色成分有应用潜力。
电荷补偿剂Li+ 橙红色荧光粉 Sr2Al2SiO7∶Sm3+ Sr2Al2SiO7∶Sm3+ Li+ Li+ Charge compensator Li+ Orange red phosphor 
光谱学与光谱分析
2019, 39(4): 1013
作者单位
摘要
新疆师范大学 物理与电子工程学院 新疆矿物发光材料及其微结构实验室, 新型光源与微纳光学实验室, 乌鲁木齐 830054
采用高温固相法合成K2MgSiO4∶Eu3+, Tb3+系列荧光材料.通过X射线衍射谱、光致发光谱以及荧光寿命对材料的物相结构和发光性质进行了表征和研究.结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好, 实验浓度范围内Eu3+、Tb3+单掺或共掺没有改变K2MgSiO4的晶体结构.由材料的光致发光谱可以看出:Eu3+单掺K2MgSiO4样品在394 nm (7F0→5L6)激发下, 显示主峰为613 nm(5D0→7F2)处的红光发射; Tb 3+单掺K2MgSiO4样品在378 nm(7F6→5G6)激发下, 显示主峰为542 nm(5D4→7F5)处的绿光发射.当Eu3+和Tb3+共掺于K2MgSiO4基质中时, 样品呈现出Eu3+较强的特征发射, Tb3+发射峰则较弱, 并且随着掺入Tb3+离子浓度的增加, Eu3+的发射明显增强, Tb3+的发射没有明显变化.另外, 当固定Eu3+浓度, 逐渐增加Tb3+离子掺杂浓度时, Eu3+的荧光寿命逐渐增加; 固定Tb3+浓度, 逐渐增加Eu3+离子掺杂浓度时, Tb3+的荧光寿命逐渐减小.这些现象确定了K2MgSiO4∶Eu3+, Tb3+荧光材料中存在Tb3+→Eu3+的能量传递关系, 使得K2MgSiO4基质中Eu3+红光发射得到改善和提高.
发光材料 硅酸盐 高温固相法 发光性质 能量传递 Luminescent material Silicate High temperature solid phase method K2MgSiO4∶Eu3+ K2MgSiO4∶Eu3+ Tb3+ Tb3+ Luminescent property Energy transfer 
光子学报
2019, 48(2): 0216003
作者单位
摘要
新疆师范大学 物理与电子工程学院, 新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
采用高温固相法合成了系列Ca2MgSi2O7∶Dy3+,Tm3+发光材料。对样品进行了XRD结构表征, 测量了激发光谱、发射光谱、色温和荧光寿命。研究结果表明, Ca2MgSi2O7∶Tm3+在355 nm激发下显示出蓝色发光, 在CIE1931中的色坐标为x=0.165 9, y=0.082 2, 色纯度为89%。通过Dy3+和Tm3+的叠加激发谱带激发, 即在349, 353, 365 nm激发下, Ca2MgSi2O7∶Dy3+,Tm3+显示出青白、冷白和暖白光, 相关色温值分别为5 193, 9 672, 4 685 K。300~500 nm区域间可以有效地激发Ca2MgSi2O7∶Dy3+,Tm3+, 并在400~600 nm之间产生蓝光和黄光复合产生的白光, 表明该体系可用作白光LED的发光材料。
Tm3+荧光粉 光致发光 白光LED 叠加激发谱带 Ca2MgSi2O7∶Dy3+ Ca2MgSi2O7∶Dy3+ Tm3+ phosphor photoluminescence white light LED superposition excitation band 
发光学报
2018, 39(7): 948
作者单位
摘要
新疆师范大学物理与电子工程学院物理系, 新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
采用高温固相法制备了BaAl2Si2O8∶Tb3+, Ce3+系列的荧光材料, 讨论了Tb3+, Ce3+单掺及Tb3+, Ce3+共掺样品的光谱性质及发光机理, 分析了Ce3+与Tb3+之间的能量传递过程。 通过对样品进行XRD, 荧光光谱, 色坐标等测试。 结果表明, Tb3+, Ce3+的掺杂没有改变BaAl2Si2O8晶体的结构。 BaAl2Si2O8∶Tb3+发出明亮的绿光, 发光峰分别位于487, 545, 583和621 nm对应于Tb3+的5D4→7FJ(J=6, 5, 4, 3)特征发射。 Ce3+的掺入没有改变BaAl2Si2O8∶Tb3+发射光谱的位置, 但使其激发谱由窄带激发变成了宽带激发增加了谱带多样性, 发光强度有了明显的增强, 而且颜色也具有一定的协调性, 使其在实际运用方面具有更大的灵活性。 发光强度增强的原因不仅仅是因为Ce3+的敏化作用, 还与Ce3+和Tb3+之间存在能量传递有密切关系。 通过猝灭法计算了, Ce3+与Tb3+之间的能量传递的临界距离为15.345 nm, 并且证明了能量传递是由偶极-偶极相互作用产生的。 通过计算得到能量传递效率最高达到了76.04%。
谱带多样性 绿色荧光粉 能量传递 BaAl2Si2O8∶Tb3+ BaAl2Si2O8∶Tb3+ Ce3+ Ce3+ Spectral band diversity Green fluorescent powder Energy transfer 
光谱学与光谱分析
2017, 37(5): 1595
作者单位
摘要
新疆师范大学 新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
采用高温固相反应法合成了一系列Dy3+、Sm3+ 单掺杂和共掺杂铝方柱石发光材料,详细地研究了Dy3+、Sm3+ 掺杂对铝方柱石的结构和发光性质的影响。XRD结果表明Dy3+、Sm3+ 离子单掺杂和共掺杂样品均形成了单相的铝方柱石结构化合物,并没有改变基质的晶体结构。发光光谱表明,通过调节Dy3+、Sm3+ 离子的掺杂比例,发光颜色可实现从黄色到黄白色的可控调节。此外,发射和激发光谱表明,Dy3+ 与Sm3+ 离子之间存在有效的光谱重叠,暗示着Dy3+ →Sm3+的能量传递。荧光寿命衰减结果进一步证实Dy3+ 与Sm3+ 离子之间是一种无辐射共振能量传递方式。
高温固相法 能量传递 色坐标 traditional solid state reaction Ca2A1[AlSiO7]∶Dy3+ Ca2A1[AlSiO7]∶Dy3+ Sm3+ Sm3+ energy transfer color coordinates 
发光学报
2017, 38(2): 154
作者单位
摘要
1 新疆师范大学 物理与电子工程学院, 新疆 乌鲁术齐830054
2 新疆矿物发光材料及其微结构实验室, 新疆 乌鲁术齐830054
采用高温固相法制备了一系列Tb3+掺杂方钠石荧光粉样品Na8Al6Si6O24Cl2∶Tb3+。通过XRD、SEM、荧光光谱、热猝灭分析仪对样品的晶体结构及其发光性能进行研究。样品晶粒由大小不等、形状不规则的多面体块状颗粒构成。样品在242 nm(对应于Tb3+离子自旋允许的7FJ→9DJ跃迁)激发下发出单色性能较好的绿色荧光, 相应的色坐标为(0.324 0, 0.587 2), 色纯度为87.4%, 发光量子效率为0.74。随着Tb3+掺杂浓度的增加, 出现浓度猝灭现象。当浓度为5%时, 样品的绿色荧光最强。研究结果表明, 样品满足PDP器件的使用要求, 可作为三基色材料中的绿色组分。
高温固相法 方钠石 发光特性 绿色荧光 traditional solid state reaction Tb3+ Tb3+ sodalite luminescence property green fluorescence 
发光学报
2016, 37(6): 676

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!