作者单位
摘要
1 中国科学院月球与深空探测重点实验室, 中国科学院国家天文台, 北京 100012
2 中国科学院大学物理科学学院, 北京 100049
我国首次火星全球遥感与区域巡视探测任务已获批立项, 首个火星探测器也即将前往火星。 为满足火星物质成分分析的需求, 我国研制了不同类型的火星物质成分分析仪器, 其中包括火星表面成分探测仪(MarsCoDe), 应用了激光诱导击穿光谱技术(laser-induced breakdown spectroscopy, LIBS)。 火星表面覆盖尘埃, 探测仪器想要准确获取火星尘埃之下的物质成分, 必须剥去尘埃或者进行破坏从而深入岩层取样。 LIBS可以用激光烧蚀待测物体表面, 获得深部物质光谱信息, 在火星表面探测中具有其他仪器无法取代的优势。 LIBS在火星探测中几乎适用于探测每一个元素, 包括轻元素H, Li, Be, B, C, N, O等, 帮助寻找有机物和含水地质过程的证据。 由于LIBS在火星环境工作, 等离子体的物理性质与地球上完全不同。 为了确保火星车载LIBS返回数据的光谱质量, 需要对LIBS在着陆后开展在轨定标。 借助火星车的携带在轨定标样品, 对探测数据进行在轨定标, 确保返回数据的可靠性。 定标样品的选择是一项十分重要的工作, 存在仪器工程条件限制、 定标样品类型的代表性、 元素成分分布范围、 样品稳定性等多种考虑因素, 需满足科学任务的同时达到加工工艺要求。 总结了国外已有的火星车载LIBS在轨定标的研究进展, 重点分析了LIBS在轨定标样品选择依据、 国外选择样品的优缺点, 并总结经验提出了几点建议, 为我国在轨定标工作提供参考。 对火星探测数据的正确解译, 对未来研究火星的起源、 火星的长期地质演变过程等具有重要的科学意义。
火星探测 激光诱导击穿光谱仪 在轨定标 Mars exploration Laser-induced breakdown spectrometer Onboard calibration 
光谱学与光谱分析
2019, 39(5): 1623
蔡婷妮 1,2,*李春来 1何志平 3任鑫 1[ ... ]徐睿 3
作者单位
摘要
1 中国科学院月球与深空探测重点实验室, 中国科学院国家天文台, 北京 100012
2 中国科学院大学物理科学学院, 北京 100049
3 中国科学院上海技术物理研究所, 上海 200083
探月工程三期项目将完成“绕、 落、 回”三个阶段中的采样返回任务, 将在未来发射嫦娥五号(CE-5)探测器, 执行月面着陆、 采样并返回地球的任务。 嫦娥五号月球矿物光谱分析仪(LMS)是探月工程三期重要的数据来源, 通过LMS光谱数据分析识别月球表面物质的矿物组成, 包括含水矿物, 同时有助于判断岩石类型, 辅助地层学分析。 为月球的形成过程、 月球地质演变及岩石-水交互作用的研究提供数据支撑。 相比于嫦娥三号红外成像光谱仪, LMS将光谱范围从450~2 400 nm扩展到了480~3 200 nm, 除了能探测月球表面主要矿物辉石、 橄榄石等, 还可以探测3 000 nm附近的羟基吸收峰特征, 为月球表面是否存在“水”提供强有力的证据。 此外, 嫦娥五号月面工作任务将获取月表以下物质, LMS可以对月表采样前后的采样区域进行光谱探测, 比较不同深度、 不同风化程度下的月壤光谱特征, 且与后期返回样品的实验室光谱对比分析。 为保证LMS月面数据的可靠性, 在探测器发射之前开展了LMS地面验证试验, 采用多种矿物及矿物混合样品, 在不同试验环境下获取LMS的探测数据, 分析研究LMS的矿物成分探测能力, 并结合标准比对仪器光谱进行光谱质量分析。 计算了所有实验样品的光谱不确定度参数。 除了具有低反射率的钛铁矿外, 所有样品都具有高质量的光谱数据。 同时, 在相同条件下, LMS光谱特征与标准比对仪器得到的光谱数据相一致, 表明LMS整体数据质量高。
嫦娥五号 月球矿物光谱分析仪 光谱质量 Chang’e-5 Lunar mineralogical spectrometer Spectral quality 
光谱学与光谱分析
2019, 39(1): 257

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!