赵庆川 1,2
作者单位
摘要
1 中煤科工集团重庆研究院有限公司, 重庆 400039
2 瓦斯灾害监控与应急技术国家重点实验室, 重庆 400039
利用甲烷气体分子在3.3 μm处的主吸收峰,研制了一种基于非色散红外光谱技术的红外甲烷传感器.传感器的光学部分由峰值波长为3.4 μm的测量发光二极管、峰值波长为2.7 μm的参考发光二极管、截止波长为3.6 μm的光电二极管及球面反射面组成;电路部分包括发光二极管驱动电路、光敏信号处理电路、温度测量电路、微处理器.采用短脉冲供电控制逻辑的工作模式,降低红外光源的上电时间,将光学测量器件的功耗降至16 mW.实验研究了温度变化对传感器甲烷浓度测量结果的影响,通过数据分析及线性拟合,得出了温度补偿算法公式.补偿后的传感器及检测系统平台实验结果表明:传感器平均功耗为23.56 mW,在-20~50℃的温度范围内温度变化对测量值的影响不超过真值的3%,湿度影响不超过真值的4%,响应时间小于25 s,工作稳定性时间大于60天,性能指标均满足或优于AQ6211-2008煤矿用非色散红外甲烷传感器行业标准相关要求.与热辐射红外光源或激光检测原理的甲烷传感器相比,基于双窄带发光二极管的红外甲烷传感器功耗降低70%以上,能够满足便携式、无线化应用场合低功耗的技术要求.
气体传感器 红外吸收 窄带光谱 LED光源 短脉冲供电 温度补偿 甲烷检测 Gas sensor Infrared absorption Narrowband spectrum LED light source Short pulse power supply Temperature compensation Methane measurement 
光子学报
2020, 49(6): 0628002
作者单位
摘要
为了实现对甲烷和二氧化碳双气体一体化测量,设计了以两个窄带中红外发光二极管(LED)作为甲烷和二氧化碳测量光源、以两个光电二极管(PD)作为探测器敏感元件的双LED-PD光学测量结构,研制了中红外甲烷二氧化碳双气体传感系统。对谱线及光学器件的选择、双LED光源脉冲电流调制、温度补偿算法进行了研究。根据甲烷和二氧化碳气体的红外线吸收光谱特征进行光学测量结构的设计,利用LED器件高速响应特性完成双光源脉冲电流调制时序算法,即采用窄脉冲模式进行电流驱动。在温度实验分析的基础上,采用中值归一数据预处理得到温度影响因子,然后对温度影响因子进行线性拟合得出温度补偿算法。实验结果表明:传感系统的平均功耗低至38.3 mW;甲烷测量误差最小为0.06%(体积分数),二氧化碳测量误差最小为0.05%(体积分数),可满足煤矿中甲烷和二氧化碳双气体浓度低功耗、稳定可靠实时测量的要求。
光谱学 红外光谱 中红外光源 热电致冷 窄脉冲 甲烷检测 二氧化碳检测 
光学学报
2020, 40(23): 2330001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!