作者单位
摘要
西安理工大学自动化与信息工程学院, 陕西 西安 710048
紫外光与降雨粒子相互作用发生散射, 散射光特性改变能够反映降雨粒子的相关物理特性(如粒子尺寸参数、 浓度、 形态), 因此研究粒子的物理参数对散射光特性的影响对有效提高光谱法定量探测降水的精度有很大意义。 由于雨滴在非球形降水粒子中具有代表性, 以群雨滴粒子为例, 采用T矩阵理论, 利用紫外光直视和非直视单次散射模型, 分析了入射光波长、 群雨滴粒子形态、 降雨强度、 粒径大小与散射光强之间的关系。 并用蒙特卡洛方法仿真分析了非球形群雨滴粒子在不同降雨强度和粒径下散射角与散射光强之间的关系, 以及降雨环境中的风切变对紫外光散射特性的影响。 通过理论及仿真分析, 得到了不同群雨滴粒子形态下的路径损耗, 不同降雨强度、 风切变率和粒径下的散射光强分布。 仿真结果表明: 在紫外光直视与非直视通信方式下, 降雨环境中的通信质量比晴天条件下的通信质量差, 即路径损耗增大。 当粒径分布已知时, 随着降雨强度的增大, 衰减系数增大, 路径损耗增加, 且直视通信方式的路径损耗比非直视降低7 dB左右。 随着降雨强度、 风切变率和粒子粒径的增大, 散射光强曲线整体呈下降趋势, 其中, 降雨强度的变化对散射光强分布影响程度最大。 相同通信距离时, 不同降雨强度下的紫外光散射光强分布均随着散射角的增大而减小, 当散射角继续增大到90°时, 有效散射体体积逐渐减小, 接收到的光子能量减小, 暴雨中的散射光强衰减程度最大。 相同降雨强度下考虑风切变时, 相比较无风时的路径损耗增大5 dB左右。 除此之外, 还研究了椭球形和切比雪夫形粒子对紫外光散射光强的影响, 结果表明当粒子粒径分布相同时, 椭球形粒子的散射光强衰减较广义切比雪夫形粒子大。 根据散射粒子的散射光强分布以及路径损耗能够区分雨滴粒子是否由相同粒径及形态组成, 为粒子测量提供理论基础。 分析降水中群雨滴粒子的光散射特性, 为提高光谱法评估降水衰减的数值模拟方面提供理论依据, 为光学技术在探测识别降水现象等气象领域的广泛应用提供了设计参考。
紫外光 降雨粒子 散射光强 T矩阵 Ultraviolet Rainfall particles Scattering intensity T matrix 
光谱学与光谱分析
2019, 39(8): 2431
作者单位
摘要
1 西安理工大学自动化与信息工程学院, 陕西 西安 710048
2 陕西省复杂系统控制与智能信息处理重点实验室, 西安理工大学, 陕西 西安 710048
紫外光与雾霾粒子发生散射后, 其散射信道特性能够反映雾霾粒子的相关物理信息, 利用无线紫外光单次和多次散射信道模型, 采用Mie散射和T矩阵理论分析了霾粒子在不同形态和浓度下的紫外光散射信道特性, 以及散射角对散射光强的影响, 并完成了紫外光在雾霾环境下的实测。 通过理论及仿真分析, 得到了不同霾粒子形态下的紫外光通信路径损耗以及光强分布。 结果表明: 紫外光直视通信方式下, 路径损耗随着霾粒子浓度的增大而增大, 且通信质量差于晴朗天。 非直视通信方式中, 在短距离通信时, 高霾浓度下的路径损耗小于中低霾浓度, 然而随着通信距离的继续增大, 高雾霾浓度下的通信质量急剧下降, 低霾浓度下通信质量最终达到最优, 且距离为200 m时通信质量能优于晴朗环境。 当通信距离相同时, 三种雾霾浓度下的紫外光散射光强分布均随着散射角的增大而减小, 当散射角继续增大并超过90°时, 低霾浓度下的散射光强最大。 主要原因是虽然散射角继续增大, 但是有效散射体体积逐渐减小, 因此低霾浓度下的散射光强较大。 且当粒子粒径相同时, 球形粒子的衰减较非球形粒子大。 雾霾环境下实测结果与仿真结果相类似, 证明了仿真结果的正确性, 并在一定程度上证明了实际大气中雾霾非球形粒子多于球形粒子。
紫外光 雾霾粒子 散射光强 路径损耗 Ultraviolet Haze particles Scattering intensity Path loss 
光谱学与光谱分析
2018, 38(3): 837

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!