柳启航 1,2,*何明霞 1,2赵晋武 1,2李岩 1,2
作者单位
摘要
1 天津大学测试计量技术及仪器国家重点实验室,天津 300072
2 天津大学精密仪器与光电子工程学院,天津 300072
龋病是发病率最高的口腔疾病,也是全世界最流行的疾病之一。太赫兹光谱成像技术因具有宽频带光谱分析能力强、空间分辨率高、电离辐射低等优势,有望成为龋病诊断的新技术手段。本文以含牙本质龋的牙齿切片为研究对象,进行反射式太赫兹光谱扫描,以频域幅值为参数对样品的光谱数据做二维重构成像,获得多幅不同频率下的龋齿太赫兹光谱图像。为了解决单一参数所得的龋齿太赫兹图像动态范围小、对比度低,边缘和细节位置模糊不清的问题,采用小波梯度域重建的融合方法,将多幅图像中梯度幅值较大的部分集中于一幅图像上,得到了一幅细节特征更加清晰完整的新图像。实验结果表明,融合后的图像相较于融合前的图像在信息熵、平均梯度以及对比度上均有所提高,不同组织之间的区分效果更加显著。
龋齿检测 太赫兹光谱成像 小波梯度域重建 图像融合 caries detection, terahertz image, gradient domain 
红外技术
2023, 45(8): 890
作者单位
摘要
1 天津大学精密测试技术及仪器国家重点实验室, 天津 300072
2 天津大学精密仪器与光电子工程学院, 天津 300072
3 莱仪特太赫兹(天津)科技有限公司, 天津 300019
太赫兹光谱成像, 不但包括在二维图像空间的强度信息, 同时可以得到太赫兹波段的光谱信息, 构成了一个三维的数据矩阵。 由于受到太赫兹成像系统内部硬件的限制和影响, 太赫兹频域较高频段处信号存在能量弱、 信噪比低的特点, 导致所成的太赫兹图像普遍存在分辨率低、 对比度低等问题。 因此, 利用三维数据矩阵, 应用适合的算法, 实现了提高太赫兹光谱成像空间分辨率、 边缘细节可见度的目的。 搭建了三维可移动式太赫兹时域光谱成像系统, 实现了对标准高分辨率板的二维扫描。 对该系统所采集到的信号分别进行时域、 频域等多种方式成像对比, 结合瑞利判据和分辨率标尺对成像系统的空间分辨率、 景深进行标定, 研究了提高太赫兹光谱成像的空间分辨率算法。 然后, 针对太赫兹频域高频区域信噪比低、 对比度低、 噪声原因复杂的特点, 结合深度残差学习的图像去噪理论, 提出了太赫兹图像深度去噪网络, 在训练集中引入成像系统中真实的“太赫兹残差噪声”。 最后, 利用所训练出的模型对太赫兹频域高频区域图像进行盲去噪, 并用重建图像分别与原始成像结果和传统太赫兹去噪算法结果进行比较, 分别从主观和客观两个方面评价了不同算法对太赫兹频域高频图像的去噪效果。 实验结果表明, 通过该算法实现了极限空间分辨率约为157 μm, 去噪后图像极限空间分辨率处的瑞利判据鞍-峰比约为0.623, 图像整体对比度为46.635; 空间分辨率相比传统成像方法提高了约一倍, 对比度提高约26%。 研究结果为高空间分辨率高可见度的太赫兹光谱成像方式提供了一种新的规范, 并针对太赫兹频域较高频区域的图像噪声问题提供了一种新的解决方案。
太赫兹光谱成像 空间分辨率 图像去噪 深度卷积神经网络 Terahertz spectral imaging Spatial resolution Image denoising Deep learning 
光谱学与光谱分析
2023, 43(2): 356
张欣欣 1,2,3何明霞 1,2,3,*赵晋武 1,2,3陈勰宇 1,3[ ... ]王璞 1,2,3
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津大学精密测试技术及仪器国家重点实验室, 天津 300072
3 天津大学太赫兹研究中心, 天津 300072
4 西安交通大学生命科学与技术学院, 陕西 西安 710048
采用频率为0.1 THz、功率密度为2.65 mW/cm 2的太赫兹光源分别辐射SD大鼠海马神经元5,15,25 min,通过神经元膜电位的变化,研究了太赫兹辐射对海马神经元兴奋性的影响,结果发现,15 min和25 min的太赫兹辐射会显著诱发海马神经元去极化,从而提高其兴奋性。为了探究太赫兹辐射提高神经元兴奋性的原因,检测了神经元内Ca 2+、Na +和K +浓度的变化,结果表明,此辐射使海马神经元内Ca 2+、Na +浓度增加,K +浓度减小。研究证实了太赫兹辐射(0.1 THz,2.65 mW/cm 2)通过调节海马神经元内带电离子的浓度促使其兴奋,为太赫兹辐射技术在生物医学领域应用的发展奠定了前期实验基础。
生物医学 太赫兹辐射 海马神经元 荧光检测 兴奋 离子浓度 
中国激光
2020, 47(2): 0207023
何明霞 1,2,3,*孙珑玲 1,2,3陈达 3黄志轩 3[ ... ]张洪桢 1,2,3
作者单位
摘要
1 天津大学精密测试技术及仪器国家重点实验室, 天津 300072
2 天津大学太赫兹研究中心, 天津 300072
3 天津大学精密仪器与光电子工程学院, 天津 300072
4 天津大学光电信息技术教育部重点实验室, 天津 300072
太赫兹生物医学是当前光谱研究领域的前沿热点, 其主要难点在于如何在有效避免水分干扰的同时, 实现复杂生物体系组分的精准分析。 太赫兹光谱产生于分子振动的信息, 其吸收谱较弱, 吸收峰严重重叠, 且多组分复杂样品的太赫兹光谱往往不是各组分光谱的简单叠加, 难以用传统的峰高、 峰面积标定技术进行定量计算。 但采用多元校正技术可以方便地实现太赫兹光谱的定量分析, 使太赫兹光谱成为一种快速、 简便且适用范围广泛的分析技术。 以KCl和NaCl的无机盐混合体系为典型研究体系, 两种组分的浓度范围均为0.1~2 mol·L-1, 浓度间隔为0.1 mol·L-1。 获取20组浓度配比不同的混合溶液的吸收系数和折射率, 巧妙利用水溶液体系中无机金属离子的水合氢键作用, 由此采集无机盐溶液体系的太赫兹时域光谱, 提取各组分的特征信息, 建立多尺度数据驱动的定量分析模型, 有望实现水溶液中无机金属离子的定量分析。 针对太赫兹光谱数据规模大、 基质干扰强及数据关联复杂等特点, 构建复杂二维小波变换、 多变量筛选、 贝叶斯数据挖掘、 深度学习和数据关联性分析技术为一体的算法数据库, 由此构建基于多尺度数据驱动的太赫兹光谱解析方法。 论文依据正交实验的原则, 构建具备良好数据结构特征的混合溶液数据集, 引导后续的光谱解析方法准确提取无机金属离子水合氢键信息。 在此基础上, 发展自适应算法, 寻找光谱数据变量与浓度间的关系, 并采用变量筛选技术, 从原始光谱数据中提取无机盐水合氢键的特征信息, 最终构建浓度与特征信息之间的数据驱动模型。 计算结果表明, KCl和NaCl组分的预测误差分别为8.0%和9.1%, 能有效满足大部分应用的检测精度要求。 多尺度数据驱动模型方法充分利用太赫兹光谱信号的时域和频域多尺度特性, 实现数据预处理与多元校正的一体化运算以避免重要信息丢失, 具备高度自适应特征。 因此, 基于数据驱动建模的太赫兹光谱分析新方法为太赫兹生物医学研究提供了新思路。
混合溶液 太赫兹时域光谱 数据驱动建模 定量分析 Mixed solution Terahertz time-domain spectrum Data-driven modeling Quantitative analysis 
光谱学与光谱分析
2019, 39(12): 3731

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!