作者单位
摘要
河北工业大学, 天津 300400
红移是星系的基本参数之一。 大量已知星系只有测光图像而并没有光谱, 因此通过测光图像而非光谱来求取红移值具有重要的研究意义。 首先构建了一种基于测光图像估计星系红移的回归网络(GRRnet)。 它和以往的类似方法相比网络层数更深, 而且增加了注意力机制, 使模型能聚焦更为有用的信息。 在GRRnet的基础上, 进一步提出了一种两步走的策略, GRRnet-C-R: 第一步把星系按照红移进行粗分类; 第二步按照分好的类分别进行回归估计, 最后再合并到一起。 这种策略可明显减小测光红移估计的误差。 该工作的数据全部来源于斯隆数字巡天(SDSS)的第十六次数据发布SDSS DR16, 从中选取了96 024个红移小于0.6的星系, 每个星系的相关数据包含g, r, z三个波段的合成图像、 u, g, r, i, z五波段的测光值、 以及被视作标签的光谱红移。 在预处理过程中, 将测光图像剪切成50×50的尺寸, 目的是在保障减少计算量的同时能框选住大部分星系。 由于对比算法NetZ的输入尺寸为64×64, 为了保持输入尺寸一致, 使用cv2.resize函数将图像尺寸更改为64×64。 实验采用了七种评价指标与多种方法进行对比, 结果表明GRRnet-C-R的均方误差(MSE)低至0.001 46, 与随机森林(RF)、 极限梯度提升(XGBoost)和NetZ相比误差分别降低了22.3%、 21.9%和18.0%。 GRRnet-C-R的线性回归决定系数R2达到了0.948, 取得了一个很好的模型拟合效果。 实验结果证明了这种两步走的策略能有效降低测光红移估计的误差, 这为之后的测光红移估计提供了一种新的思路和方法。
红移估计 星系红移回归网络 通道注意力机制 测光图像 两步走策略 Redshift estimation Galaxy redshift regression network Channel attention mechanism Photometric image Two-step strategy 
光谱学与光谱分析
2023, 43(8): 2529
作者单位
摘要
河北工业大学, 天津 300400
恒星的分类问题一直是天文研究的一大热点, 恒星的亚型分类对探究恒星演化、 稀有天体识别等具有重大意义。 针对LAMOST光谱亚型分类问题设计了SSTransformer (stellar spectrum transformer)分类模型, 该模型主要由三部分组成, 包括输入模块、 嵌入模块、 SST编码模块。 在输入模块中, 将光谱数据进行分块处理, 这些块经过线性投射层被映射为向量。 在嵌入模块中, 为了提取有用的数据特征, 将线性投射层的输出加入一个可学习的类别嵌入块, 为了保留位置信息, 再加入位置嵌入块, 之后将这些数据特征向量送入SST编码模块。 最后在SST编码模块中, 对数据特征进行提取处理, 并利用多层感知器结合新特征对恒星光谱进行分类。 采用的A、 F、 G、 K、 M型恒星光谱数据均来自LAMOST DR8中的一维低分辨率光谱, 35 256条一维光谱数据用于SSTransformer模型的训练, 8815条一维光谱数据用作模型的测试。 为了加快模型的收敛速度, 对数据采用Z-Score归一化处理。 由于是多分类问题, 实验采用了准确率、 精确率、 召回率、 F1-Score、 Kappa系数五个评价指标。 实验结果证明, 利用SSTransformer模型可实现对一维恒星光谱数据有效的筛选分类, 分类准确率达到98.36%, 比支持向量机(support vector machine, SVM)算法、 极端梯度提升(eXtreme Gradient Boosting, XGBoost)算法, 以及卷积神经网络(convolutional neural networks, CNN)的分类准确率更高。
恒星光谱 自动分类 SSTransformer模型 归一化 Stellar spectra Automatic classification SSTransformer model Normalized 
光谱学与光谱分析
2023, 43(8): 2523
作者单位
摘要
河北工业大学电子信息工程学院, 天津 300401
随着越来越多的大型光谱巡天计划的实施, 产生了海量的恒星光谱数据, 这对于恒星演化理论的研究具有重大意义, 但也给传统的光谱分类和处理带来极大挑战。 2021年发布的LAMOST DR7(v2.0版本)光谱数据集中, 恒星光谱总量为百万量级, 但其中O型星的数量仅为129条, 远远小于其他六类恒星光谱数量。 对于这种数据量大、 数据集严重不平衡的情况, 传统的机器学习分类方法达不到较好的效果, 因此多用于对相邻两类、 部分类或子类恒星光谱进行分类。 针对以上问题, 使用一维卷积神经网络(CNN)和一维生成对抗网络(GAN)相结合的半监督学习模式对七类恒星光谱进行全分类。 实验首先对每条光谱进行裁剪和去噪, 截取光谱波长范围为370.00~867.16 nm部分, 然后进行均匀采样和归一化, 生成大小为1×3 700的数据集样本, 送入CNN进行训练。 为了避免过拟合并提高模型对未知数据的预测能力, 在CNN的全连接层和池化层之间添加正则项Dropout。 使用该网络对除O型星以外的六类光谱进行分类, 平均分类准确率达到98.08%。 针对O型星数量严重偏少的问题, 采用GAN来扩充数据集。 GAN的输入是1×900大小的噪声信号, 经过生成器中全连接的三层跨步卷积运算, 输出大小为1×3 700的数据。 通过对生成器和判别器进行单独交替迭代训练使GAN收敛, 最终输出所需数量的O型星样本, 达到扩充数据集的目的。 和常见的通过过采样扩充数据集相比, 利用GAN扩充数据集, 结合一维CNN对恒星光谱进行全分类, 可以将O型星的分类准确率由72.92%提升至97.92%, 整个分类器的准确率达到96.28%。 实验结果表明, 使用这种半监督模式的恒星光谱自动分类方法可以实现对七类恒星光谱的快速、 准确分类, 也可以用于对标记为“Unknown”的未分类恒星光谱进行挖掘, 达到充分利用光谱的目的。
恒星光谱 自动分类 卷积神经网络 生成对抗网络 半监督模式 Star spectra Automatic classification Convolutional neural networks Generative adversarial networks Semi-supervised mode 
光谱学与光谱分析
2023, 43(6): 1875
作者单位
摘要
1 河北工业大学, 天津 300400
2 中国科学院国家天文台, 北京 100012
天文学上把亮度随时间变化的恒星称为变星。 它对于研究星系的距离, 恒星的演化以及恒星在不同阶段的性质具有非常重要的意义。 目前对变星的识别主要依靠长时间观测其亮度变化, 并结合对恒星的光谱进行分析才能最终完成认证。 这项工作需要天文学家投入大量时间, 难以开展大规模分类。 针对上述问题本文提出了一种将测光图像与一维光谱进行数据融合用于对变星进行分类的方法——光谱-测光融合网络(ASPF-Net)。 该网络由C1网络和C2网络两部分组成, 其中C1是用于提取光谱特征的一维卷积神经网络, C2是用于提取测光数据特征的二维卷积神经网络; 最后将两者提取到的特征进行融合, 用一个全连接前馈神经网络完成分类。 该研究在对食变星、 脉冲变星和标准星分类问题上进行了实验。 实验数据均来自于斯隆数字巡天项目(SDSS), 该项目包含了测光图像和光谱两种数据。 对于光谱数据本文选取波长在380.0 ~680.0 nm范围内的流量值。 测光图像由: u、 g、 r、 i和z共5个波段数据组成, 对应的中心波长分别为: 355.1、 468.6、 616.6、 748.0和893.2 nm。 相比于传统的利用其中三个波段合成RGB图像, 原始SDSS数据拥有更高的灰度等级。 为了方便网络训练, 对测光数据和光谱数据均做了标准化处理。 分类性能分析方面, 使用了精确率, 召回率, F1值和平均准确率四个指标进行评估。 提出的光谱-测光融合网络(ASPF-Net)在针对食双星、 脉冲变星和标准星的分类任务, 精确率分别为: 91.1%、 92.8%和98.2%。 实验证明, 数据融合之后的分类性能优于单独使用光谱数据或测光数据的分类性能。 说明将光谱数据和测光数据结合起来对变星进行分类是一种有效的方法, 这为今后的变星的分类提供了一种新的思路和方法。
数据融合 光谱分类 多模态融合网络 测光图像 变星分类 Data fusion Spectral classification Feature fusion network Photometry image Variable star classification 
光谱学与光谱分析
2023, 43(6): 1869
作者单位
摘要
1 河北工业大学, 天津 300400
2 中国科学院国家天文台, 北京 100012
天体光谱处理中的一项基本任务是对大量的恒星光谱进行自动分类。 到目前为止, 恒星光谱的分类工作多是基于一维光谱数据。 该研究打破传统的天体光谱数据处理流程, 提出了基于二维恒星光谱分类的方法。 在LAMOST(the large sky area multi-object fiber spectroscopic telescope)的数据处理流程中, 所有的一维光谱都是由二维光谱抽谱、 合并得来。 二维光谱是由光谱仪产生的图像, 包括蓝端图像和红端图像。 基于LAMOST二维光谱数据, 提出了特征融合卷积神经网络(FFCNN)分类模型, 用于二维恒星光谱的分类。 该模型是一个有监督的算法, 通过两个CNN模型分别提取蓝端图像和红端图像的特征, 然后将二者进行融合得到新的特征, 再利用CNN对新特征进行分类。 所使用的数据全部来源于LAMOST, 我们在LMOST DR7中随机选择了一批源, 然后获得了它们的二维光谱。 一共有14 840根F, G和K型恒星的二维光谱用于FFCNN模型的训练, 其中包括7 420根蓝端光谱和7 420根红端光谱。 由于三类恒星光谱的数量并不均衡, 在训练的过程中分别为每类恒星光谱设置了不同权重, 防止模型出现分类失衡现象。 同时, 为了加快模型收敛, 对二维光谱数据采用Z-score归一化处理。 此外, 为了充分利用所有样本, 提高模型的可靠度, 采用五折交叉验证的方法验证模型。 3 710根二维光谱用作测试集, 使用准确率、 精确率、 召回率和F1-score来对FFCNN模型的性能进行评价。 实验结果显示, F, G和K型恒星的精确率分别达到87.6%, 79.2%和88.5%, 而且它们超过了一维光谱分类的结果。 实验结果证明基于FFCNN的二维恒星光谱分类是一种有效的方法, 它也为恒星光谱的处理提供了新的思路和方法。
二维恒星光谱 光谱分类 FFCNN模型 归一化 交叉验证 Two-dimensional stellar spectra Spectral classification FFCNN model Normalized Cross-validation 
光谱学与光谱分析
2022, 42(6): 1881
王楠楠 1,*邱波 1马杰 1石超君 1[ ... ]郭平 2
作者单位
摘要
1 河北工业大学电子信息工程学院, 天津 300401
2 北京师范大学系统科学学院, 北京 100875
恒星光谱数据的分类是天体光谱自动识别的最基本任务之一, 光谱分类的研究能够为恒星的演化提供线索。 随着科技的发展, 天文数据也向大数据时代迈进, 需要处理的恒星光谱数量越来越多, 如何对其进行自动而精准地分类成为了天文学家要解决的难题之一。 当前恒星光谱自动分类问题的解决方法相对较少, 为此本文使用了一种基于卷积神经网络的方法对恒星光谱MK系统进行分类。 该网络由数据输入层、 四个卷积层、 四个池化层、 全连接层、 输出层构成, 与传统网络相比具有局部感知、 参数共享等优点实验。 在Python3.5的环境下编程, 利用Tensorflow构建了一个简单高效的具有四个卷积层的卷积神经网络, 并将Dropout作用于全连接层之后以防止过度拟合。 Dropout的基本思想: 当网络模型进行训练时, 把一些神经网络节点按一定的比例丢弃, 使其暂时不发挥作用。 Dropout可以理解成是一种十分高效的神经网络模型平均方法, 由于它不依赖于某些局部特征所以能够让网络模型更加鲁棒。 实验中使用的一维恒星光谱图是取自LAMOST DR3数据库, 首先进行预处理截取光谱3 600~7 300 的部分, 均匀采样后使用min-max标准化法对其进行初始化。 实验包括两部分: 第一部分为依据恒星光谱MK系统对光谱进行分类, 每一类的训练样本包含1 000条光谱数据, 测试样本为400条光谱数据, 首先通过训练样本对CNN网络进行训练, 进行3 000次的迭代, 用训练后的网络将测试样本进行分类以验证网络的准确性; 第二部分为相邻两类的恒星光谱的分类, 其中O型星数据集样本为250条光谱, 其余类别恒星样本数据集均为4 000条光谱, 将数据5等分, 每次选取当中的一份当作测试集, 其余部分当作训练集, 采用5折交叉验证法求得模型准确率, 用BP神经网络进行对比实验。 选择对网络模型进行评估的指标包括精确率P、 召回率R、 F-score、 准确率A。 实验结果显示CNN在对六类恒星光谱进行分类时其准确率都在95%以上, 在对相邻类别的恒星进行分类时, 由于O型星样本量较少, 所以得到的分类结果不太理想, 对其余类别的恒星分类准确率都高于98%, 以上结果都证明了CNN算法能够很好地解决恒星光谱的分类问题。
恒星光谱数据 自动分类 5折交叉验证 Stellar spectral data Automatic classification CNN CNN 5-Cross-validation 
光谱学与光谱分析
2019, 39(10): 3297
作者单位
摘要
1 河北工业大学, 天津 300400
2 北京师范大学系统科学学院, 北京 100875
多目标光纤光谱望远镜可以在一次观测中获得大量的不同天体的光谱数据。 从天体探测到的光在通过光纤之后, 再通过光谱仪狭缝, 然后在CCD传感器中成像为二维光谱图; 之后经过光纤光谱数据处理系统的一系列软件处理, 最终输出可供天文界使用的一维光谱并存储起来。 一维光谱是天文学家研究目标天体的主要手段, 它是通过处理二维光谱图得到的。 以LAMOST为例, 望远镜系统在一次观测后首先会得到32幅由250条光纤光谱组成的二维光谱, 然后经过一系列的处理得到一维光谱。 在这个过程中, 会有很多因素影响到最终一维光谱的精确度。 比如由于望远镜使用时间的增加, 某些元件会产生磨损、 老化或变形, 使得二维光谱中光纤形状会产生一定程度的弯曲, 这种弯曲在二维光谱的两侧表现得尤为明显。 在一幅常见的二维光谱中, 纵坐标方向代表了抽取的一维光谱的波长方向, 横坐标方向代表了抽取的一维光谱的流量方向, 这种弯曲形变的产生会影响到之后的波长定标和流量定标, 使得抽取的一维谱信息不准确。 目前初步的解决办法是通过与定标灯谱的比对来尽量减少其影响。 但这样不仅造成了时间和人力的浪费, 而且准确率和效率不高。 就这一现状, 提出了一种基于曲线距离法的思想, 将弯曲的二维谱线校直: 首先采用灰度重心法将一幅二维光谱中的250条光纤中心轨迹进行定位, 将异常点采用稳健的局部回归方法剔除; 然后将中心轨迹进行曲线拟合, 得到光纤中心轨迹的方程; 通过模仿曲线变弯的逆过程, 即保持轨迹上两点间的曲线距离不变, 再将弯曲的光谱映射到竖直的法线上, 完成校直过程。 在整个过程中保持各个对应点的灰度值不变, 通过边缘处理和插值运算解决产生的像素点稀疏问题。 最后采用累加法进行一维谱抽取, 并将校直后抽取的一维光谱与未校直抽取的一维光谱进行比对, 比对后可发现校直前后在一维光谱的两端差别较大, 其差值谱线也说明了这一点。 该方法实现了二维光谱的自动校直, 大大提高了抽取一维谱的效率和准确性。 二维光谱的预处理和校直方法首先在LAMOST数据上进行验证, 鉴于多目标光纤光谱望远镜系统原理的相似性, 该处理方法也适用于其他的多目标光纤光谱望远镜系统, 具有较好的参考和应用价值。
二维光谱 曲线拟合 弯曲校直 Two-dimensional spectra Cure fitting Bending alignment 
光谱学与光谱分析
2019, 39(10): 3051
穆永欢 1,*邱波 1魏诗雅 1宋涛 1[ ... ]郭平 2
作者单位
摘要
1 河北工业大学电子信息工程学院, 天津 300400
2 北京师范大学系统科学学院, 北京 100875
星系的红移在天文研究中极其重要, 星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。 利用斯隆巡天项目发布的SDSS DR13的150 000个星系的测光及光谱数据进行分析, 首先根据颜色特征并基于聚类的方法对星系进行分类, 由分类结果可知早型星系的占比较大。 对比了三种不同的机器学习算法对早型星系进行测光红移回归预测实验, 并找出最优的方法。 实验中将星系样本中u, g, r, i, z五个波段的测光值以及两两做差得到的10个颜色特征作为输入数据, 首先构建BP网络, 使用BP算法对星系的测光红移进行回归预测; 然后利用遗传算法(GA)优化BP网络各层参数, 将优化后的GA-BP算法应用于早型星系的回归预测试验中。 考虑到GA算法的复杂操作会影响预测效率, 并且粒子群算法(PSO)不仅稳定性高且操作简单, 因此将粒子群算法应用到星系样本中早型星系的测光红移回归预测实验中, 进而采用粒子群算法优化BP网络(PSO-BP)。 实验中将光谱红移作为期望值, 采用均方差(MSE)作为误差分析指标来评判三种算法的精度, 将PSO-BP回归预测结果与BP网络模型、 GA-BP网络模型进行比较。 由实验结果可知, BP网络的MSE值为0001 92, GA-BP网络的MSE值0001 728, PSO-BP网络的MSE值为0001 708。 实验结果表明, 所用到的PSO-BP优化模型在精度上优于BP神经网络模型和GA-BP神经网络模型, 分别提高了111%和12%; 在效率上优于传统的K近邻(KNN)测光红移估计算法, 克服了KNN算法中遍历所有数据样本进行训练的缺点并且其泛化性能优于其它BP网络优化模型。
测光红移 粒子群优化 粒子群算法优化BP网络 BP神经网络 GA-BP神经网络 Photometric redshift Particle swarm optimization PSO-BP optimization network BP neural network GA-BP neural network 
光谱学与光谱分析
2019, 39(9): 2693
作者单位
摘要
1 河北工业大学电子信息工程学院, 天津 300401
2 北京师范大学信息科学与技术学院, 北京 100875
恒星光谱自动分类是研究恒星光谱的基础内容, 快速、 准确自动识别、 分类恒星光谱可提高搜寻特殊天体速度, 对天文学研究有重大意义。 目前我国大型巡天项目LAMOST每年发布数百万条光谱数据, 对海量恒星光谱进行快速、 准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。 针对恒星光谱自动分类问题, 提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法, 并与支持向量机(SVM)、 误差反向传播算法(BP)对比, 采用交叉验证方法验证分类器性能。 与传统方法相比CNN具有权值共享, 减少模型学习参数; 可直接对训练数据自动进行特征提取等优点。 实验采用Tensorflow深度学习框架, Python3.5编程环境。 K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。 截取每条光谱波长范围为3 500~7 500 部分, 对光谱均匀采样生成数据集样本, 采用min-max归一化方法对数据集样本进行归一化处理。 CNN结构包括: 输入层, 卷积层C1, 池化层S1, 卷积层C2, 池化层S2, 卷积层C3, 池化层S3, 全连接层, 输出层。 输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。 C1层设有10个大小为1×3步长为1的卷积核。 S1层采用最大池化方法, 采样窗口大小为1×2, 无重叠采样, 生成10张特征图, 与C1层特征图数量相同, 大小为C1层特征图的二分之一。 C2层设有20个大小为1×2步长为1的卷积核, 输出20张特征图。 S2层对C2层20张特征图下采样输出20张特征图。 C3层设有30个大小为1×3步长为1的卷积核, 输出30张特征图。 S3层对C3层30张特征图下采样输出30张特征图。 全连接层神经元个数设置为50, 每个神经元都与S3层的所有神经元连接。 输出层神经元个数设置为2, 输出分类结果。 卷积层激活函数采用ReLU函数, 输出层激活函数采用softmax函数。 对比算法SVM类型为C-SVC, 核函数采用径向基函数, BP算法设有3个隐藏层, 每个隐藏层设有20, 40和20个神经元。 数据集分为训练数据和测试数据, 将训练数据的40%, 60%, 80%和100%作为5个训练集, 测试数据作为测试集。 分别将5个训练集放入模型中训练, 共迭代8 000次, 每次训练好的模型用测试集进行验证。 对比实验采用100%的训练数据作为训练集, 测试数据作为测试集。 采用精确率、 召回率、 F-score、 准确率四个评价指标评价模型性能, 对实验结果进行详细分析。 分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选, 训练集数据量越大, 模型泛化能力越强, 分类准确率越高。 对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。
恒星光谱 自动分类 卷积神经网络 交叉验证 评价指标 Star spectra data Automatic classification Convolutional neural network Cross-validation Evaluation index 
光谱学与光谱分析
2019, 39(4): 1312
作者单位
摘要
1 河北工业大学, 天津 300401
2 中国科学院国家天文台, 北京 100012
二维光纤光谱图是天文望远镜系统中的光谱仪的观测结果, 由此又经过一系列的后续处理, 才能生成普遍意义上的一维光谱。 由于光谱仪和CCD相机的光学畸变, 使得二维光纤光谱图像普遍出现了弯曲现象, 尤其是在光纤两端表现得尤为明显, 这个问题一直以来没有很好的解决办法, 也没有在任何参考文献中看到相关工作。 这种弯曲给后续的抽谱工作造成困扰, 处理不好会很大程度上影响波长定标, 从而影响一维谱的准确性。 给出的一种法向映射法可以对这种二维光纤光谱图的弯曲进行有效的校正。 该法把二光纤光谱图中的每一条光纤光谱进行单独处理。 首先做预处理抽取每根光纤中心线, 然后把该中心线当作光滑曲线求取每个点的法线方向, 以整条中心线的某个点(一般是最凸点) 为基点作理想竖直线, 光纤中心线所有点沿自身法线方向投影到这条竖直线上, 从而实现了光纤中心线本身的校直。 因光纤宽度在二维光纤光谱图中一般是7个像素, 因此将光纤中心线向左向右各依次平移3个像素, 分别实现上述流程, 即可得到整条光纤光谱的校直结果。 该法实施过程中有两个问题需要注意: 一个是坐标点的均匀化问题, 一个是像素灰度值的精度保持问题。 坐标点的均匀化问题是由于在该法中使用了法向映射, 从而造成形成后的校直线的点的疏密程度不均匀, 这对后续处理不利。 解决办法是在实际操作中采用三次样条插值的方法进行直线上点的密度均匀化, 保证获得一系列的整数点坐标, 以利于后续的处理。 而像素灰度值的精度保持问题, 在插值计算过程中始终保持像素灰度值的64位高精度数, 最终也得到同样精度的结果, 避免造成像素值损失。 该法实施的最后, 还需要进行头尾一致性的截取, 把延伸出图像高度范围的像素去掉, 仅保留图像范围内的像素点。 如果没有这个过程, 由于光纤本身是有宽度的, 映射出来的直线长短不一, 从而给后续处理造成困难。 实验完整处理了整幅的二维光纤光谱图, 用曲线拟合的方法较好地解决了光纤中心线提取过程中的个别地方的亮度偏差问题, 用法向映射法得到了校直后的二维光谱, 并做了后续的抽谱对比。 在一维谱的抽谱对比中可以看到, 校正前后的谱线差值在有弯曲现象存在的光谱两端变化较为明显。 这个实验结果证明了该方法对光谱的弯曲情况可以完全改善——在两端的变化较大, 在中间的变化很小, 这完全符合观测的基本认知。 不仅如此, 由于像素点的错位和像素值的插值计算, 也会造成流量值叠加的效果发生显著变化。 因此, 通过观察抽谱后的谱线在校正前后的移动情况, 验证了对于特征谱线的波长位置的精确获取具有重要影响。 本文创造性地设计的二维光纤光谱的自动弯曲校正的方法。
二维光纤光谱 法向映射 弯曲校正 2D optical fiber spectra Normal mapping method Bending correction 
光谱学与光谱分析
2019, 39(2): 622

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!