作者单位
摘要
1 华东交通大学机电与车辆工程学院, 江西 南昌 330013
2 南昌海关技术中心, 江西 南昌 330013
冬枣品质受其品种和生长环境等因素的影响, 引起采后化转红指数不同, 导致果实的颜色差异较大, 从而影响其可溶性固形物(SSC)检测模型的分析精度。 采用可见-近红外(Vis-NIR)光谱结合Norris-Williams平滑(NWS)、 连续小波导数(CWD)、 多元散射校正(MSC)、 标准正态变量变换(SNV)和NWS-MSC五种光谱预处理方法构建不同颜色(红绿相间MJ, 绿色GJ和红色RJ)冬枣SSC的偏最小二乘(PLS)定量分析模型, 分别采用MJ, GJ, RJ, MJ-GJ和MJ-GJ-RJ五个样品集合建立冬枣SSC的定量分析模型, 并采用由MJ-GJ-RJ三种颜色冬枣样品组成的测试集进行模型的评价; 以不同建模样品集(校正集)的校正相关系数(Rc)和交互验证均方根误差(RMSECV)作为构建最优模型的评价指标; 测试集的预测相关系数(Rp)和预测均方根误差(RMSEP)用于模型预测精度的评价。 研究结果表明: 分别采用MJ, GJ和RJ的独立样品集进行建模时, 模型仅对具有相同颜色的冬枣样品的SSC实现了较好的预测; 分别在MJ样品中加入GJ和GJ-RJ样品进行MJ-GJ和MJ-GJ-RJ两个混合样品集的定量模型的构建时, MJ-GJ模型对MJ和GJ样品的SSC具有较好的预测效果, 其RMSECV, Rc, RMSEP, Rp分别为1.108, 0.698, 0.980, 0.724和1.108, 0.698, 0.983, 0.822, 而对RJ样品的预测误差较大, 模型的RMSECV, Rc, RMSEP, Rp为1.108, 0.698, 1.928, 0.597; 而MJ-GJ-RJ模型对三种颜色的冬枣SSC均有较好的预测结果: MJ-GJ-RJ模型对MJ样品的SSC模型的RMSECV, Rc, RMSEP, Rp为1.158, 0.796, 1.077, 0.668; 对GJ样品的SSC模型的RMSECV, Rc, RMSEP, Rp为1.158, 0.796, 0.881, 0.861; 对RJ样品的SSC模型的RMSECV, Rc, RMSEP, Rp为1.158, 0.796, 1.140, 0.841; 采用蒙特卡罗无信息变量消除(MCUVE)方法进一步对MJ-GJ-RJ样品集光谱的特征变量进行优选后, 模型的RcRp分别由原来的0.796和0.864提高到0.884和0.922, 模型的RMSECV和RMSEP分别由1.158和0.946减小到0.886和0.721, 模型具有较好的分析精度。 采用可见-近红外光谱对不同颜色冬枣的SSC进行分析时, 当建模集样品与测试集样品颜色属性相似或选择性质相似的建模变量进行模型构建时, 模型具有更好的通用性。
可见-近红外光谱 偏最小二乘 冬枣 可溶性固形物 蒙特卡罗无信息变量消除 Visible-near infrared spectroscopy Partial least squares Jujube Soluble solids content Monte Carlo uninformative variable elimination 
光谱学与光谱分析
2021, 41(11): 3385
作者单位
摘要
1 华东交通大学机电与车辆工程学院, 江西 南昌 330013
2 南昌海关技术中心, 江西 南昌 330038
黑心病是鸭梨贮藏期间发生的生理病害, 其病变初期表现在内部果核处出现褐色斑块, 而在果实外观上与正常果几乎没有任何差异, 严重影响鸭梨的贮藏时间和品质, 亟需一种快速无损的检测方法为鸭梨质量保驾护航。 采用可见-近红外光谱法对鸭梨黑心缺陷进行在线检测和识别, 结合平滑(Smoothing)、 标准正态变量变换(SNV)、 多元散射校正(MSC)、 SG一阶导数(SG 1st-Der)以及小波变换(WT)预处理方法和主成分分析(PCA)、 k近邻(kNN)、 朴素贝叶斯(NBC)、 支持向量机(SVM)以及基于Adaboost的集成学习等方法对鸭梨黑心病进行判别研究。 Adaboost集成了kNN、 NBC和SVM三个独立学习器。 将120个健康鸭梨和165个黑心鸭梨共计285个样品划分为训练集和测试集进行模型的构建和评价, 采用训练集的查准率/查全率的调和平均值(F-measure)和正确识别率(Accuracy)对分类模型进行优化和评价。 研究结果表明: 不同属性(正常和黑心)鸭梨样品光谱的前三主成分分布图相互交错, 很难直观地对黑心鸭梨进行区分。 样品光谱经小波变换(小波基为“Haar”)预处理的kNN模型训练集的F-measure和Accuracy分别为78.98%和82.62%; 经过SG一阶导数预处理后的NBC模型训练集的F-measure和Accuracy分别为80.90%和82.11%; 经过小波变换预处理后的SVM模型训练集的F-measure和Accuracy分别为90.24%和91.58%; 经小波变换预处理的AdaBoost模型训练集的F-measure和Accuracy分别为91.46%和92.63%。 通过测试集对模型进行验证可知: 光谱经小波变换预处理后建立的Adaboost分类模型最优, 分类的F-measure达到90.91%, 较WT-kNN, SG 1st-Der-NBC和WT-SVM模型分别提高了11.39%, 15.23%和2.30%; Accuracy达到92.63 %, 分别提高了10.52%, 11.58%和2.10%; 模型对测试集样品预测时的计算时间约为0.12s, 满足在线分选要求。 可见-近红外光谱结合AdaBoost分类方法, 可以为鸭梨黑心病的在线检测提供一种快速简便的分析方法。
鸭梨 黑心病 可见-近红外光谱 集成学习 在线检测 “Yali” pear Black heart disease Vis-near infrared spectroscopy Integrated learning Online detection 
光谱学与光谱分析
2021, 41(9): 2764
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
甲醇汽油和乙醇汽油都为清洁能源, 但甲醇汽油和乙醇汽油的优缺点各有不同, 其中甲醇、 乙醇的含量决定了汽油性能的优劣, 对甲醇汽油和乙醇汽油进行判别区分以及醇类汽油中醇含量进行定量测定非常重要。 通过中红外光谱技术对醇类汽油的类型进行判别并对其含量进行定量分析。 首先通过对比分析甲醇汽油和乙醇汽油的中红外光谱图, 采用随机森林(random forest, RF)对甲醇汽油和乙醇汽油样品进行判别; 在建立甲醇汽油和乙醇汽油样品定性判别模型之后, 分别建立甲醇汽油和乙醇汽油的定量测定模型, 从而精确测定汽油中对应的醇的含量。 为减小在实验过程中实验仪器振动、 噪声等原因导致的光谱漂移、 光散射等现象, 对中红外光谱进行预处理。 首先采用不同预处理, 如(savitzky-golay, S-G)卷积平滑、 多元散射校正(multiplicative scatter correction, MSC)、 标准正态变量变换(standard normal variable transformation, SNV)、 导数(derivatives)等方法进行校正, 分别建立适合甲醇汽油和乙醇汽油的检测模型。 预处理后的数据分别建立甲醇汽油、 乙醇汽油的最小二乘支持向量机(least square support vector machine, LS-SVM)模型。 采用随机森林(random forest, RF)对甲醇汽油和乙醇汽油样品进行判别, 发现当决策树个数为61时, 判别正确率达到98.28%。 对于LS-SVM模型, 比较建模结果可知: 无论是甲醇汽油还是乙醇汽油, 标准正态变量变换(SNV)预处理效果最好, 经SNV校正处理后建立的甲醇汽油甲醇含量测定LS-SVM模型的预测相关系数Rp为0.9519, 均方根误差(root mean square error of prediction, RMSEP)为1.766 3; 经过标准正态变量变换后建立的乙醇汽油乙醇含量测定LSSVM模型的预测相关系数Rp为0.951 5, 均方根误差RMSEP为1.770 3。 该研究可为甲醇汽油、 乙醇汽油的定性判别和其含量测定提供技术参考和理论依据, 为甲醇汽油产业提供测量醇类汽油检测的新方法, 具有较为重要的现实意义, 也为其他类型的化工产品的检测奠定了基础。
中外光谱 醇类汽油 最小二乘支持向量机 随机森林 Mid-infrared spectroscopy Alcohol gasoline Least square support vector machine Random forest 
光谱学与光谱分析
2020, 40(5): 1640
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
采用近红外光谱(NIRS)结合偏最小二乘(PLS)方法, 实现对饲料中粗脂肪和粗纤维的快速定量分析。 采用Norris-Williams平滑求导(NW)和多元散射校正(MSC)方法对光谱进行预处理; 蒙特卡罗无信息变量消除法(MCUVE)、 变量组合集群分析法(VCPA)和区间变量迭代空间收缩法(iVISSA)用于光谱变量选择和优化; PLS用于光谱校正模型的建立, 采用校正集相关系数(Rc)、 交互验证均方根误差(RMSECV)、 预测集相关系数(Rp)和预测集均方根误差(RMSEP)评价模型。 光谱预处理中经MSC处理后的光谱模型优于其他预处理方法, 其RMSECV和RMSEP值都减小, Rc和Rp值都增大。 脂肪定量分析中, 原始光谱模型的RMSECV和Rc为0.21和0.87, RMSEP和Rp为0.20和0.88, 变量数(Vn)为1 501; 经MCUVE方法选择变量后建立的定量模型, 其RMSECV和Rc为0.17和0.92, RMSEP和Rp为0.19和0.89, Vn为400个; 经VCPA选择变量建立PLS定量模型, 其RMSECV和Rc为0.21和0.87, RMSEP和Rp为0.25和0.81, Vn为12; 经iVISSA选择变量后的模型, 其RMSECV和Rc为0.21和0.86, RMSEP和Rp为0.20和0.87, Vn为20。 粗纤维定量分析中, 原始模型的RMSECV和Rc为0.28和0.91, RMSEP和Rp为0.25和0.95, Vn为1 501; 经MCUVE选择后的模型, 其RMSECV和Rc为0.23和0.95, RMSEP和Rp为0.23和0.94, Vn为740; 经VCPA选择变量后的模型, 其RMSECV和Rc为0.27和0.91, RMSEP和Rp为0.30和0.91, Vn为11; 经iVISSA选择后变量的模型, 其RMSECV和Rc为0.29和0.90, RMSEP和Rp为0.27和0.93, Vn为20。 结果表明, MSC方法可以有效提高光谱质量, 消除光谱平移误差; MCUVE变量选择方法可以简化模型提高模型精度和稳定性, 建立最优模型。 在粗脂肪的定量分析模型中, MSC处理后的光谱经过MCUVE选择后剩余400个变量, Rc和Rp相较于全谱模型提高了0.05和0.01, RMSECV和RMSEP分别降低到了0.17和0.19; 经VCPA和iVISSA选择变量的模型其结果与全谱模型相似, 但其变量分别只有12和20个。 在粗纤维模型中, 经MCUVE选择后740个变量用于建立PLS模型, 其Rc和Rp为0.95和0.94, RMSECV和RMSEP分别为0.23和0.23; VCPA和iVISSA分别运用11和12个变量建立回归模型, 但结果都比MCUVE模型差。 利用饲料近红外光谱建立MSC-MCUVE-PLS模型可以有效对饲料粗脂肪和粗纤维进行定量分析。
近红外光谱 饲料 蒙特卡罗无信息变量消除法 变量组合集群分析法 区间变量迭代空间收缩法 Near infrared spectroscopy (NIRS) Feed Monte carlo based uninformative variable eliminati Variables combination population analysis (VCPA) Interval variable iterative space shrinkage approa 
光谱学与光谱分析
2020, 40(1): 215
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
将近红外光谱分析技术结合化学计量学方法用于山茶油混合油品中油酸和亚油酸含量的快速检测。配制了76种山茶油混合油样本用于近红外光谱的采集,将不同的光谱预处理方法用于光谱有效信息的提取;将蒙特卡罗无信息变量消除(MCUVE)和变量组合集群分析(VCPA)方法用于建模变量的选择;将偏最小二乘回归(PLSR)用于脂肪酸含量定量分析模型的构建。结果表明:经NWD1 st-MSC预处理后,两种脂肪酸的近红外光谱的较正均得到最好的结果;采用基于VCPA的变量优选方法极大地改善了模型精度,实现了建模变量数量的有效压缩。对于油酸模型,建模变量数量由1501减少为7,交叉验证均方根误差和校正相关系数分别为1.107和0.984,预测均方根误差和测试集的预测相关系数分别为1.178和0.981;对于亚油酸模型,建模变量数量由1501减少为8,交叉验证均方根误差和校正相关系数分别为0.089和0.987,预测均方根误差和测试集的预测相关系数分别为0.105和0.982。近红外光谱分析技术结合NWD1 st-MSC-VCPA-PLSR的方法为山茶油混合油品中脂肪酸含量的测定提供了一种快速简单的分析方法。
光谱学 近红外光谱 脂肪酸 变量筛选 蒙特卡罗无信息变量消除 变量组合集群分析 
光学学报
2019, 39(9): 0930004
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
柑橘叶片叶绿素含量的准确检测对柑橘营养状况和生长态势具有极其重要的意义。 研究了快速无损诊断柑橘叶片中叶绿素含量的方法, 以期为拉曼光谱检测技术用于柑橘叶片叶绿素含量检测提供参考。 采集不同冠层高度和不同地理分布的柑橘叶片120片, 拭去叶片表面的灰尘, 用去离子水对其清洗、 晾干装入密封袋中并用标签分类标注。 然后对柑橘叶片进行拉曼光谱采集, 参数设置如下: 分辨率为3 cm-1, 积分时间为15 s; 激光功率为50 mW。 分别采用BaselineWavelet、 迭代限制最小二乘(IRLS)和不对称最小二乘(ALS)三种算法对柑橘叶片的拉曼光谱背景进行扣除, 使用偏最小二乘(PLS)方法建立定量模型; 四种光谱预处理方法归一化(Normalization), Savitzky-Golay卷积平滑(SG smoothing, SG平滑)、 多元散射校正(MSC)和Savitzky-Golay一阶导数(SG 1st Der)对扣除背景后的光谱进行进一步的优化处理。 结果表明: 采用原始光谱、 BaselineWavelet、 IRLS、 ALS背景扣除处理后的光谱建立PLS模型, 模型的相关系数r分别为0.858, 0.828, 0.885和0.862, 交互验证均方根误差(RMSECV)分别为5.392, 5.870, 4.934和5.336, 最佳因子数分别为8, 3, 8和8; IRLS背景扣除处理后的PLS模型的RMSECV最小, 相关系数最高, 建模效果最好。 分别采用SG平滑、 归一化、 MSC和SG 1st Der预处理方法对IRLS背景扣除后光谱进行预处理并建立PLS模型, 结果表明: IRLS光谱及其结合SG平滑、 归一化、 MSC和SG 1st Der四种预处理方法的PLS模型的R分别为0.885, 0.897, 0.852, 0.863和0.888, RMSECV分别为4.934, 4.715, 5.595, 5.182和4.962; 最佳因子数分别为8, 8, 8, 8和5; IRLS-SG平滑后PLS模型的RMSECV最小, 模型效果最优。 对IRLS-SG平滑预处理后的PLS模型展开验证, 预测相关系数r为0.844, 预测均方根误差(RMSEP)为5.29, 预测精确度较高。 采用拉曼光谱结合三种光谱背景扣除方法和四种预处理方法对柑橘叶片叶绿素含量进行定量分析表明: 采用IRLS背景扣除结合SG平滑预处理后的PLS模型最优, 建模集r为0.897, RMSECV为4.715; 预测集r为0.844, RMSEP为5.29, 预测精度较高。 拉曼光谱结合背景扣除方法可以为柑橘叶片叶绿素含量的定量分析提供一种快速简便的分析方法。
迭代限制最小二乘 不对称最小二乘 SG平滑 拉曼光谱 叶绿素 柑橘叶片 BaselineWavelet BaselineWavelet Iterative restricted least squares Asymmetric least squares SG smoothing Raman spectrum Chlorophyll Citrus leaves 
光谱学与光谱分析
2019, 39(6): 1768
作者单位
摘要
1 华东交通大学机电与车辆工程学院, 江西 南昌 330013
2 赣州出入境检验检疫局, 江西 赣州 341001
木材的种类识别是木材加工和贸易的一个重要环节, 传统的木材种类识别方法主要有显微检测法和木材纹理识别法, 其操作繁琐, 耗时长, 成本高, 不能满足当前需求。 本研究利用木材的近红外光谱(NIRS)结合模式识别方法, 以期实现木材种类的快速准确识别。 采用近红外光谱结合主成分分析法(PCA)、 偏最小二乘判别分析法(PLSDA)和簇类独立软模式法(SIMCA)三种模式识别对58种木材进行种类鉴别研究; 5点平滑、 标准正态变量变换(SNV)、 多元散射校正(MSC)、 Savitzky-Golay一阶导数(SG 1st-Der)和小波导数(WD)五种光谱预处理方法用于木材光谱的预处理; 校正集和测试集样品的正确识别率(CRR)用于模型的评价。 采用PCA方法, 通过样品的前三个主成分空间分布图分辨木材种类的聚类情况。 在建立PLSDA模型, 原始光谱的正确识别率最高, 分别为88.2%和88.2%; 5点平滑处理的光谱校正集和测试集的CRR分别为88.1%和88.2%; SNV处理的光谱校正集和测试集的CRR分别为84.4%和84.5%; MSC处理的光谱校正集和测试集的CRR分别为83.1%和84.2%; SG 1st-Der处理的光谱校正集和测试集的CRR分别为81.8%和82.7%; WD(小波基为“Haar”, 分解尺度为80)处理的光谱校正集和测试集的CRR分别为87.3%和87.2%。 可知, 在PLSDA模型中, 木材光谱未经预处理种类识别效果最后好。 在建立SIMCA模型过程中, 原始光谱的校正集和测试集的CRR分别为99.7%和99.4%; 5点平滑处理的光谱校正集和测试集的CRR分别为100%和100%; SNV处理的光谱校正集和测试集的CRR分别为99.5%和99.1%; MSC处理的光谱校正集和测试集的CRR分别为99.0%和98.4%; SG 1st-Der的光谱校正集和测试集的CRR分别为81.8%和82.7%; WD处理的光谱校正集和测试集的CRR分别为100%和100%。 可知, 在SIMCA模型中, 木材光谱经平滑和小波导数处理后的识别效果最好, 且光谱的校正集和测试集CRR都为100%。 采用三种模式结合五种不同的预处理方法对木材近红外光谱进行定性建模识别时, 由于木材样本属性复杂, 主成分分布图相互交织, PCA无法识别出58种木材; 原始光谱的PLSDA模型可以得到较好的判别模型, 但校正集和测试集的CRR只有88.2%和88.2%; 木材光谱经过5点平滑或WD预处理后的SIMCA模型可达到最好的识别效果, 校正集和测试集的CRR均为100%, 且WD-SIMCA模型因子数比5点平滑SIMCA模型小, 模型更为简化, 故WD-SIMCA为58种木材种类识别的最优模型。 研究表明光谱预处理方法可以有效的提高木材种类识别精度, 有监督模式识别方法SIMCA可以用来建立有效的木材识别模型, 近红外光谱结合模式识别可以为木材种类的识别提供一种快速简便的分析方法。
近红外光谱 木材种类识别 光谱预处理 偏最小二乘判别分析法 簇类独立软模式法 Near infrared spectroscopy (NIRS) Identification of wood species Spectral preprocessing Partial least squares discriminate analysis (PLSDA Soft independent modeling of class analogy (SIMCA) 
光谱学与光谱分析
2019, 39(3): 705
作者单位
摘要
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
为提升飞轮的可靠性, 本文对飞轮故障诊断技术进行了研究。通过对基于数学解析模型与基于智能计算的故障诊断方法的对比研究, 提出了一种基于神经网络的混合故障诊断方法。该方法首先使用数学解析模型与原系统输出的差值作为一级残差; 而后利用该一级残差以及系统可测状态对神经网络进行训练; 然后使用混合模型输出的二级残差对系统故障进行检测; 最后以飞轮注入母线电压以及电枢电流故障对该方法进行验证: 在存在母线电压故障工况下混合模型避免了解析模型电流估计的发散问题, 与单神经网络模型相比最大跟踪误差降低了44%。在存在电流故障时, 不同的转速工况下与两种单模型相比混合模型的最大跟踪误差降低了90%, 跟踪方差减小了10倍以上。混合方法可以有效解决由于解析模型存在建模误差引起的故障诊断不够准确的问题以及由于缺乏训练数据所引起的单神经网络模型不能适应新工况的故障诊断问题。
故障诊断 神经网络 混合模型 建模误差 非线性 fault diagnosis neural network hybrid method modeling error nonlinear 
光学 精密工程
2018, 26(7): 1728
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
采用机器视觉检测方法对深沟球轴承装配过程中的滚珠遗漏缺陷进行自动检测。引入3种光源照明方案用于采集轴承图像,采用中值滤波去除图像噪声,基于圆形Hough变换和极坐标展开方法进行轴承图像的圆形检测和矩形展开。选用完好轴承80个、滚珠遗漏轴承60个进行实验。结果表明:采用背光配合同轴光的照明方式可有效减少轴承表面反光;采用中值滤波对图像进行预处理,可以在消除图像孤立噪声点的同时,使图像少一些模糊;采用圆形Hough变换可以快速获取轴承的内外环图像并对其进行定位,然后通过笛卡尔极坐标展开方法将经过预处理的深沟球轴承图像归一化展开成矩形,最后通过设置灰度阈值实现滚珠缺漏位置的检测和识别。本文方法对80个完好轴承的识别率为92.5%,对60个滚珠遗漏轴承的识别率为93.3%。
机器视觉 滚珠遗漏检测 图像处理 深沟球轴承 
激光与光电子学进展
2018, 55(2): 021502
作者单位
摘要
1 西安交通大学 电子物理与器件教育部重点实验室, 西安 710049
2 西北核技术研究所, 西安 710024
半导体断路开关的输出电压中的预脉冲现象, 严重影响了整个系统的输出脉冲前沿陡度和重复频率。针对半导体断路开关在反向截断过程中预脉冲产生的过程和机理进行了研究。利用Silvaco Atlas仿真软件对半导体断路开关正反向泵浦过程中载流子的迁移和电场的变化过程进行了详细考察, 发现预脉冲的产生是由双边截断过程中N-N+结截断所引起的脉冲前沿变缓现象, 其长短主要取决于P型轻掺杂区内的少子电子的迁移率, 而脉冲前沿的陡度则取决于双边截断过程中的PN结截断过程。同时, 对具有不同基区长度的器件, 对其在不同泵浦电流密度下的情况进行了模拟和对比, 发现器件基区越窄, 脉冲前沿越陡, 而预脉冲基本相等; 低电流密度条件下只发生N-N+结单边截断, 大电流密度条件下则发生双边截断, 而双边截断的延迟更长, 但脉冲前沿拐点更陡, 截断更快。
半导体断路开关 预脉冲 脉冲前沿 迁移率 双极漂移 双边截断 semiconductor opening switch pre-pulse rise time mobility bipolar drift bilateral interruption 
强激光与粒子束
2018, 30(6): 065001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!