高乾坤 1,2,3,*刘文清 2,3张玉钧 2,3
作者单位
摘要
1 中国电子科技集团公司第三十八研究所, 安徽 合肥 230088
2 中国科学院安徽光学精密机械研究所环境光学技术重点实验室, 安徽 合肥 230031
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
应用傅里叶变换红外光谱法进行在线工业窑炉高温气体监测时,湍流形成的噪声会影响光谱信噪比和浓度反演的精度。研究新的红外干涉信号-光谱转换的数据处理方法,该方法与传统傅里叶变换的光谱数据处理方法不同,它以零光程差为基准对齐干涉信号,实现多次扫描干涉信号的平均,同时采用复数窗函数与光谱数据卷积的方法来降低光谱旁瓣引起的光谱混叠程度。这种数据处理算法可以减小湍流噪声对气体浓度反演的影响,提高反演精度,减少计算量,提高光谱数据率。以叠加湍流的一氧化碳被动测量实验为例,分析了采用不同数据处理方法得到的光谱信噪比、光谱相关性和浓度反演结果。分析结果表明研究的信号数据处理方法在湍流噪声存在的在线检测中优于传统数据处理方法,采用新的数据处理方法得到的光谱更加精确(光谱相关性更好),气体反演的浓度也更准确,同时可减少系统计算量并缩短系统在线测量的响应时间,这对于在线监测气体浓度的准确性是至关重要的。
光谱学 傅里叶变换红外光谱法 湍流噪声 干涉信号 数据处理方法 
光学学报
2021, 41(17): 1730001
作者单位
摘要
北京理工大学 光电学院 混合现实与新型显示工程技术研究中心, 北京 100081
基于部分相干光理论, 推导了空间部分相干光的等效表达式, 提出一种产生全息图的算法。算法根据推导的空间部分相干光表达式建立相应的数学模型, 且根据夫琅禾费衍射的光学性质, 将数学模型与角谱理论和迭代算法相结合; 在此基础上, 结合时间平均理论进一步降低散斑。通过散斑对比度和峰值信噪比进行图像质量评价, 理论结果表明: 所提算法产生的全息图再现图像可以将散斑对比度降低21.7%。
计算全息 空间部分相干光 散斑消除 散斑对比度 峰值信噪比 Computer generated holography Partially spatial coherent light Speckle elimination Speckle contrast Peak signal to noise ratio 
光学技术
2018, 44(6): 673
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
被动傅里叶变换红外(FTIR)光谱技术具有远程操作、在线分析和不需要 红外光源等优点。基于此技术 分析了被动遥测轧钢加热炉内燃烧过程中高温一氧化碳(CO)气体浓度计算的相关理论与方法。针对加 热炉辐射光谱测量包含两层均质红外辐射传输介质的情况,提出了采用炉膛外壁控温改变遥测背景红外辐 射,从而获得炉内CO特征光谱的方法。基于轧钢过程中的燃烧工况进行了CO浓度模拟计算与分析,讨论了CO温 度测量误差对测量浓度反演精度的影响,为该技术的实际应用提供了参考数据及技术方案。
光谱学 被动遥测 傅里叶变换红外光谱 一氧化碳 高温 spectroscopy passive remote detection Fourier transform infrared spectroscopy carbon monoxide high temperature 
量子电子学报
2018, 35(4): 486
高乾坤 1,2,3刘文清 1,3张玉钧 1,3高闽光 1,3[ ... ]童晶晶 1,3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
基于傅里叶变换红外光谱技术对高温窑炉内气体红外辐射信号进行了遥测研究。根据工业现场条件,利用大气辐射原理建立被动辐射模型,计算了炉膛内高温气体透射率。针对湍流噪声对信噪比的影响,研究了红外干涉信号光谱转换的数据处理方法,以零光程差为基准对齐干涉信号,以实现多次扫描干涉信号的平均,减小了噪声和计算量,并提高了光谱数据率。利用HITRAN数据库和高温参考谱模型法,对谱线线强、线宽修正合成的校准光谱与透射谱进行非线性最小二乘拟合,反演了炉膛内不同吸收波段的高温气体浓度。结果表明该技术在窑炉内及其他工业燃烧过程中对高温气体的在线检测是可行、可靠的。
大气光学 辐射传输 数据处理 光谱分析 遥感 
光学学报
2017, 37(8): 0801002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!