作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院,北京 100191
2 锐光信通科技有限公司,湖北 武汉 430074
光子带隙光纤具有弯曲损耗小、对环境变化不敏感等优点,是极端应用条件下高稳定光纤陀螺的理想光纤。但光子带隙光纤的传输损耗大,缺乏适用于光纤陀螺的低损耗、小模场光子带隙光纤。提出了独立反谐振纤芯光纤构型,将纤芯与包层进行空间隔离,利用纤芯壁反谐振效应抑制基模与表面模的耦合,利用反谐振与光子带隙双重效应将光限制在纤芯中传输,从而实现了光子带隙光纤小模场、低损耗的特性。理论分析结果表明,所提出的光纤构型可将模场直径为~8 μm的光子带隙光纤的损耗降低至<3.5 dB/km。采用两步法制备的光纤基本复现了设计结构,但占空比与设计值存在偏差,导致带隙偏移,实验测得所制备光纤的最小损耗为~25 dB/km@1200 nm。
光纤光学 光纤设计 光子带隙光纤 低损耗 小模场直径 
中国激光
2022, 49(19): 1906002
作者单位
摘要
北京航空航天大学仪器科学与光电工程学院,北京 100191
介绍了北京航空航天大学在光子晶体光纤陀螺技术方面的研究进展。在光纤研制方面,设计并拉制了适用于1550 nm高精度光纤陀螺的Φ110 μm细径实芯保偏光子晶体光纤和适用于850 nm小型化光纤陀螺的Φ100 μm超细径实芯保偏光子晶体光纤,突破了km级空芯光子晶体光纤的批量制备技术。在陀螺应用方面,干涉式实芯光子晶体光纤陀螺精度突破0.001(°)/h,实现了国际上光子晶体光纤陀螺的首次空间试验验证;干涉式空芯光子晶体光纤陀螺实现了优于0.4(°)/h的样机精度;同时还探索了空芯光子晶体光纤在谐振式光纤陀螺上的应用。
光纤光学 光纤陀螺 光子晶体光纤 干涉式光子晶体光纤陀螺 谐振式光子晶体光纤陀螺 
光学学报
2022, 42(17): 1706002
作者单位
摘要
北京航空航天大学仪器科学与光电工程学院, 北京 100191
实芯保偏光子晶体光纤在双折射、温度、抗辐照等方面具有独特的优势,非常适合于光纤陀螺应用,然而其损耗较大,影响着光子晶体光纤陀螺性能的提高,空气孔内壁表面粗糙度引起的散射是导致损耗的原因之一。针对实芯保偏光子晶体光纤散射损耗,建立了光纤散射模型,仿真计算散射损耗为0.179 dB/km;搭建了全自动测试装置,测量灵敏度可达1 pW,散射角测量范围可达15°~165°,光纤旋转角度分辨率可达1°,实现了三维散射球的测量,得到散射损耗为0.23 dB/km,验证了理论仿真结果的可靠性。
光纤光学 光子晶体光纤 散射损耗 散射分布测量 实芯保偏光子晶体光纤 
激光与光电子学进展
2019, 56(1): 010601
作者单位
摘要
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
空芯光子带隙光纤拥有优越的环境适应性, 但光纤中的高阶模使其在多种场合下的应用受到制约。利用光子带隙内高阶模式在小于截止波长时被强烈抑制, 而基模在该波段可以稳定存在的特性, 提出了实现单模传输的方法, 并通过实验验证了该方法的可行性。在此基础上仿真分析了包层参数对单模传输波段的影响, 计算结果表明, 单模传输波段的带宽随材料折射率的增加而增加, 折射率由1.445提高到2时, 带宽增加2.9倍; 相对倒角由0.2提高到0.8时, 单模传输波段的工作波长移动310nm以上。
空芯光子带隙光纤 有限元法 空间光谱分析成像 高阶模式 单模传输 hollowcore photonic bandgap fiber finite element method spatially and spectrally resolved imaging highorder mode singlemode propagation 
半导体光电
2018, 39(3): 369
作者单位
摘要
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
为了研究光子带隙光纤在1550nm波长下受径向压力的影响, 采用有限元法做仿真计算进行了定量研究, 并通过搭建实验系统对比分析了实测与仿真计算结果的差异。结果表明, 限制损耗随径向压力变化的灵敏度为0.00067(dB/km)/(N/m), 归一化分界面场强F参量随径向压力的变化率为0.68×10-6/(N/m), 折射率随径向压力的变化率为1.0×10-8/(N/m)。该研究为光子带隙光纤在光纤传感领域的应用提供了一种实验分析途径。
光纤光学 光子带隙光纤 有限元法 损耗 压力 fiber optics photonic bandgap fiber finite element method loss pressure 
激光技术
2016, 40(5): 682

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!