作者单位
摘要
1 江苏海洋大学理学院, 江苏 连云港 222005
2 江苏海洋大学电子工程学院, 江苏 连云港 222005
3 北京理工大学化学与化工学院化学系, 北京 102488
4 中国科学院工程热物理研究所能源动力研究中心, 北京 100190
燃油发动机的尾气成分检测对于发动机的状态判断、 环境污染监测等具有重要参考价值。 选择以95号汽油为燃料的除草机的发动机作为实验样机, 将发动机排出的尾气直接吹向拉曼积分球光谱仪信号采集焦点, 利用拉曼积分球光谱仪较高的气体检测限和定性、 定量检测所有分子类气体的特点, 对尾气中的气体分子成分进行检测。 探测到尾气的气体成分主要包括N2、 O2、 CO2、 CO、 未燃烧的汽油等。 以氮气振动(2 331 cm-1)的拉曼特征峰强度作为标准, 对O2(1 553 cm-1)、 CO2(1 285和1 388 cm-1)、 CO(2 144 cm-1)、 未燃烧的汽油(2 894 cm-1)的拉曼光谱强度进行归一化处理, 获得其相对拉曼特征峰强度。 对比发现, 空气和汽油挥发混合气的光谱中均未出现CO的特征峰, 汽油挥发混合气中的O2、 CO2含量与空气相比也没有明显变化, 而CO2费米共振峰1 388和1 285 cm-1拉曼特征峰的相对强度比发生变化。 除草机工作状态分为怠速、 一档和二档, 处于工作状态时, 尾气成分中的O2含量均比空气中含量低, 可以定量分析发动机工作过程中消耗的O2量。 而燃油发动机从怠速加速到一档和二档的过程中, 尾气中O2含量相对增加。 这是由于发动机档位的提升伴随着空气的进气量增大, 则参与发动机燃烧的氧气比例相对减少。 与此同时, 尾气中CO2含量相比于空气中的含量急剧增加, 说明燃油发动机工作过程会产生大量的CO2, 且随着档位的提升, 发动机的动力增加, 尾气中CO2比例也逐渐增高。 CO2作为导致温室效应的主要原因, 化石燃料的使用也是其主要来源之一。 数据显示尾气中CO的含量与尾气中汽油的含量成正相关, 说明燃烧不充分的时候, 汽油剩余较多, CO作为不充分燃烧的产物, 其含量也会增加。 随着发动机档位的增加, N2特征峰的绝对强度降低, 这是因为发动机尾气温度升高, 造成氮气的斯托克斯散射强度降低。 利用拉曼积分球光谱仪对不同状态下发动机尾气成分的变化进行分析, 并初步建立发动机状态与气体浓度变化的关系。 对拉曼积分球技术应用于燃油发动机尾气检测进行了初步探索并验证了其可行性。
发动机尾气 拉曼积分球 光谱仪 原位检测 Engine exhaust Raman integrating sphere Spectrometer In situ detection 
光谱学与光谱分析
2023, 43(10): 3310
作者单位
摘要
1 江苏海洋大学, 江苏 连云港 222005
2 中国科学院大连化学物理研究所甲醇制烯烃国家工程实验室, 辽宁 大连 116023
3 内蒙古科技大学内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室,内蒙古 包头 014010
拉曼积分球由光散射共焦激发收集系统和四直角反射镜增光程系统组成。光散射共焦激发收集系统由N套共焦点的拉曼散射信号收集光具组组成, 可以将散射向共焦点的光具组的拉曼信号收集后集中传输向一个方向, 提高拉曼散射信号收集立体角度N倍; 四直角反射镜增光程系统由4个直角反射镜组成, 将激发光形成互相平行的空间立体光路, 并且经收集光具组聚焦于光散射共焦激发收集系统的焦点, 从而提高激发光功率的使用效率。应用于气体检测可以实现对气体分子的多成分、低浓度、原位、快速、无损、无接触的定性、定量分析。
拉曼积分球 气体分子 定量分析 Raman Integrating Sphere Gas molecular Quantitative analysis 
光散射学报
2020, 32(2): 154
作者单位
摘要
1 江苏海洋大学电子工程学院, 江苏 连云港 222005
2 内蒙古科技大学内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室, 内蒙古 包头 014010
3 内蒙古科技大学理学院, 内蒙古 包头 014010
拉曼光谱作为一种激发光谱, 采用激光作为激发光源, 在气体检测中可以激发所有气体分子的拉曼信号。 由于气体的分子密度低、 透光度高、 拉曼散射截面小, 导致激发光能量的利用效率低; 拉曼信号散射向四周立体空间而常规收集方法只能收集较小的空间立体角, 从而造成检测限较差而不能广泛应用于气体的检测。 提出了一种拉曼直角反射共焦腔用来提高气体等透明样品的拉曼检测的检测灵敏度。 拉曼直角反射共焦腔利用直角反射镜将入射光反射回原方向但是光路具有空间偏移的特点, 采用两个相对放置、 互相平行的直角反射镜, 将光束直径为0.7 mm的激光在工作直径为25.4 mm的共焦腔内10次来回反射, 并采用共焦点相对放置的两个透镜将激发光聚焦到焦点, 从而提高激发光能量的使用效率。 拉曼散射向激光传输方向的信号被直角反射镜反射向原方向, 经过透镜聚焦到焦点后和拉曼散射向激光入射方向的信号一起经过长通滤光片后传输向拉曼光谱仪, 从而提高了拉曼散射信号的收集效率。 以空气作为测试对象进行实验, 300 s内可以获得清晰的CO2的拉曼光谱和N2, O2的精细拉曼光谱并对其强度比进行了分析, 其中N2的2 332 cm-1, O2的1 557 cm-1, CO2的1 388 cm-1的拉曼峰的峰高比是785∶257∶1。 拉曼直角反射共焦腔在常规拉曼散射激发收集光路的基础上增加了两个直角反射镜和一个聚焦镜, 具有体积小, 结构简单, 易于调节的特点。 拉曼散射向周围空间的信号强度分布与入射光的入射方向有关, 在沿入射光方向及其相反方向散射信号强度最大, 拉曼直角反射共焦腔设计的收集散射信号的角度与散射信号强度分布最强方向一致, 并且利用了光学景深的优势, 最大化的提高了拉曼散射信号收集效率。 拉曼直角反射镜腔可以拓展拉曼光谱技术在气体检测中的应用, 例如用于气相化学反应的原位监控、 发动机燃烧过程及排放物检测、 未知污染物气体分析等气体成分复杂的领域。
直角反射共焦腔 拉曼光谱 气体检测 Right angle reflection cavity Raman spectroscopy Gas detection 
光谱学与光谱分析
2020, 40(2): 432
作者单位
摘要
1 南京航空航天大学生物医学工程系, 江苏 南京 210016
2 淮海工学院, 江苏 连云港 222005
搭建了可用于生物医学检测的小型近红外拉曼光谱仪。 通过理论计算, 几何光路设计, 完成了系统组装。 有别于传统反射式准直结构: (1)本光谱仪色散系统采用透射式准直的方法, 将散射光投射到光栅上进行色散; (2)经二向色镜分光, 采用物镜对入射光会聚和散射光收集, 设计了与色散系统入射狭缝相匹配(共焦面)的外光路系统, 进而有效收集拉曼信号和去除杂散光; (3)实现了高分辨率(3 cm-1)、 高重复性和高灵敏度光谱检测, 检测范围500~2 200 cm-1(785 nm激发); (4)小型化设计, 整个系统尺寸约240 mm×200 mm×130 mm, 自由度高。 将此自开发小型拉曼光谱仪应用于葡萄糖和膝关节软骨的拉曼光谱测试, 获得了与大型商业拉曼光谱仪相媲美的结果, 验证了该光谱仪具有高分辨率, 高重复性和高灵敏度的优越性能, 可灵活地应用于生物医学等多领域的研究。
小型近红外拉曼光谱仪 生物医学 透射式准直 二向色镜 Small NIR-Raman spectrometer Biomedical Transmission-based collimating Dichroic 
光谱学与光谱分析
2018, 38(6): 1933
作者单位
摘要
中国科学院大连化学物理研究所催化基础国家重点实验室,大连洁净能源国家实验室,大连 116023
紫外拉曼光谱技术具有拉曼本征散射效率高,受杂散光干扰小等优点,在爆炸物、污染物以及农药残留现场检测等领域有着广阔的应用前景。然而,目前市场上常见的小型或者便携式拉曼光谱仪均采用可见或者近红外激光作为激发光源。本研究在实验室具有自主知识产权的紫外可见共振拉曼光谱仪的基础上,设计了小型紫外拉曼光谱仪,光谱仪采用透镜作为光谱仪的准直镜和聚焦镜,有效减小了慧差造成的影响,实现了高分辨率和宽光谱范围的测试。
拉曼光谱仪 紫外拉曼 小型拉曼 Raman spectrometer UV Raman mini Raman 
光散射学报
2017, 29(4): 348
作者单位
摘要
1 中国科学院大连化学物理研究所催化基础国家重点实验室,大连洁净能源国家实验室,大连116023
2 上海公安局物证鉴定中心,上海200083
采集31种爆炸物和73种毒品的标准拉曼谱图,分析其谱图,选出适合作为搜索条件的光谱范围。通过编程,建立标准拉曼谱图库和自动检索系统。在选定光谱范围内,拉曼谱图库选择信号较强的特征峰,进行曲线拟合,将获得的峰位置、相对峰强等数据作为参数写入标准拉曼谱图库。通过自动检索系统将未知拉曼光谱与数据库中的标准谱图进行分析比对,搜索软件自动给出正确结论。数据库具有添加、删除、备份、恢复等辅助功能,并具有自动扣除荧光背底,优化拉曼光谱图等功能。本文进一步分析了可能对分析比对结果造成影响的因素。
拉曼光谱 拉曼光谱标准数据库 爆炸物 毒品 自动检索系统 Raman spectrum database of Raman spectrum explosives drugs information search system 
光散射学报
2017, 29(3): 228

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!