曹宇鹏 1,3,4,5杨聪 1施卫东 1,5,*花国然 1[ ... ]李荣 4
作者单位
摘要
1 南通大学 机械工程学院, 江苏 南通 226019
2 南通理工学院 机械工程学院, 江苏 南通 226002
3 香港理工大学 机械工程系, 香港 100077
4 南通中远海运船务工程有限公司, 江苏 南通 226006
5 江苏大学 流体机械工程技术研究中心, 江苏 镇江 212013
为研究激光冲击材料内部位错组态和晶粒细化的关系,用脉冲激光对690高强钢试样进行了冲击强化处理,采用扫描电镜和透射电镜分别获得了冲击后试样的扫描电子显微像和透射电子显微像、高分辨电子显微像,并对高分辨电子显微像进行快速傅里叶逆变换,从位错组态角度建立了激光冲击690高强钢晶粒细化模型.结果表明,690高强钢试样经功率密度为5.09 GW/cm2的激光冲击加载后,其材料内部位错增殖、表层晶粒细化,截面晶粒尺寸大小分布在80~200 nm;析出相与基体保持半共格关系,基体中分布着众多刃型位错、位错偶以及扩展位错等缺陷,其中位错偶是由带割阶的螺型位错运动形成;通过由位错、扩展位错、空位等构成的几何位错界面扩展交汇把原始大晶粒分割成细小晶粒;激光冲击690高强钢晶粒细化模型可以描述激光冲击690高强钢位错运动主导的晶粒细化过程.
激光光学 激光冲击强化 位错组态 690高强钢 晶粒细化 Laser optics Laser shock processing Dislocation configuration 690 high strength steel Grain refinement 
光子学报
2020, 49(4): 0414004
曹宇鹏 1,2,*周东呈 1冯爱新 2,3花国然 1[ ... ]朱娟 4
作者单位
摘要
1 南通大学机械工程学院, 江苏 南通 226019
2 江苏大学机械工程学院, 江苏 镇江 212013
3 温州大学机电工程学院, 浙江 温州 325035
4 上海振华重工集团(南通)有限公司, 江苏 南通 226019
为研究激光冲击波在690高强钢薄板中的传播机制,对690高强钢薄板经激光冲击后的动态响应以Hyperworks、LSDYNA为平台进行模拟,用聚偏氟乙烯压电传感器进行测量,将模拟结果与实验结果对比研究试样动态应变特性,建立了高应变率条件下表面动态应变模型和690高强钢薄板激光冲击波加载模型。研究结果表明,在功率密度为12.7 GW/cm2的激光加载下,通过改变表面测量位置和试样厚度测得表面Rayleigh波波速为3.08×103m/s、纵波的波速为3.09×103m/s;表面Rayleigh波传播速度模拟值为3.24×103m/s,模拟结果与实验结果有较好的一致性;通过调整激光功率密度可分离剪切波和表面Rayleigh波。实验数据证明690高强钢表面动态应变模型准确可靠,激光冲击波加载模型可描述激光冲击波在690高强钢薄板中的传播机制。
光学制造 激光光学 激光冲击波 传播机制 690高强钢 
中国激光
2016, 43(11): 1102010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!