作者单位
摘要
北京科技大学 机械工程学院,北京 100083
由于VCSEL具有低功耗、小体积、高调制频率和容易集成等特征,被广泛应用于磁探测领域之中。作为一种高精密的传感器,原子磁强计在测量磁场过程中由于激光器的输出不稳定导致测量精度下降。针对环境等干扰导致激光器的输出不稳定问题,设计了一种可以抵抗环境温度变化的控制器。首先,通过带DSP内核的ADAU1401A芯片与DPSD方法实现了高分辨率温度解算;然后,通过系统辨识的方式建立温控数学模型;最后,应用干扰观测器与内模控制原理设计出抗扰动、低超调、鲁棒性的控制器。实验结果表明:在70 ℃温度下, 存在干扰的控制精度为±0.003 ℃,常温下控制精度为±0.001 5 ℃,为激光器稳定输出与高精度磁场测量奠定了基础。
半导体激光器 交流温控 干扰观测器 内模控制 数字相敏检波 semiconductor laser AC temperature control disturbance observer IMC control DPSD 
红外与激光工程
2020, 49(7): 20190461
作者单位
摘要
1 北京科技大学 机械工程学院,北京 100083
2 北京自动化控制设备研究所,北京 100074
半导体激光器作为原子磁强计的重要组成部分,其波长和功率主要由电流和温度决定,而传统的直流温控系统会对磁强计产生磁场干扰。针对高精度电流控制、温度控制和磁场干扰问题,设计了一种激光器恒流源驱动和交流控温系统。首先,设计基于功放的高精度激光器恒流源驱动系统;然后,设计交流温度调制解调检测和交流加热驱动系统;最后,采用STM32控制器、高精度AD采集和DA输出结合温度模糊自适应PID控制算法进行高精度温度控制。实验结果表明:在42 ℃温度下控制精度为±0.005 ℃,在32 mA电流下稳定度为±0.5 μA,为激光器光功率和波长稳定性奠定基础。
半导体激光器 交流温度控制 精密电流 模糊自适应PID semiconductor laser AC temperature control precision current fuzzy adaptive PID 
红外与激光工程
2019, 48(9): 0905004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!