Author Affiliations
Abstract
1 Centre for Precision Manufacturing, DMEM, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
2 State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, People’s Republic of China
3 Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin 4, Ireland
4 School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
Atomic and close-to-atomic scale manufacturing (ACSM) represents techniques for manufacturing high-end products in various fields, including future-generation computing, communication, energy, and medical devices and materials. In this paper, the theoretical boundary between ACSM and classical manufacturing is identified after a thorough discussion of quantum mechanics and their effects on manufacturing. The physical origins of atomic interactions and energy beams-matter interactions are revealed from the point view of quantum mechanics. The mechanisms that dominate several key ACSM processes are introduced, and a current numerical study on these processes is reviewed. A comparison of current ACSM processes is performed in terms of dominant interactions, representative processes, resolution and modelling methods. Future fundamental research is proposed for establishing new approaches for modelling ACSM, material selection or preparation and control of manufacturing tools and environments. This paper is by no means comprehensive but provides a starting point for further systematic investigation of ACSM fundamentals to support and accelerate its industrial scale implementation in the near future.
manufacturing ACSM quantum mechanics first-principles atomic interaction energy-matter interaction mechanisms 
International Journal of Extreme Manufacturing
2022, 4(1): 012001
Author Affiliations
Abstract
Centre of Micro/Nano Manufacturing Technology (MNMT) at Tianjin University and University College Dublin
This article presents the three paradigms of manufacturing advancement: Manufacturing I, craft-based manufacturing by hand, as in the Stone, Bronze, and Iron Ages, in which manufacturing precision was at the millimeter scale; Manufacturing II, precision-controllable manufacturing using machinery whereby the scales of material removal, migration, and addition were reduced from millimeters to micrometers and even nanometers; and Manufacturing III, manufacturing objectives and processes are directly focused on atoms, spanning the macro through the micro- to the nanoscale, whereby manufacturing is based on removal, migration, and addition at the atomic scale, namely, atomic and close-to-atomic scale manufacturing (ACSM). A typical characteristic of ACSM is that energy directly impacts the atom to be removed, migrated, and added. ACSM, as the next generation of manufacturing technology, will be employed to build atomic-scale features for required functions and performance with the capacity of mass production. It will be the leading development trend in manufacturing technology and will play a significant role in the manufacture of high-end components and future products.
atomic and close-to-atomic scale ACSM manufacturing III development trend 
International Journal of Extreme Manufacturing
2020, 2(3): 030201
Author Affiliations
Abstract
1 Centre of Micro/Nano Manufacturing Technology, MNMT-Dublin, University College Dublin, Ireland
2 State Key Laboratory of Precision Measuring Technology and Instruments, Centre of Micro/Nano
Atomic scale manufacturing is a necessity of the future to develop atomic scale devices with high precision. A different perspective of the quantum realm, which includes the tunnelling effect, leakage current at the atomic-scale, Coulomb blockade and Kondo effect, is inevitable for the fabrication and hence, the mass production of these devices. For these atomic-scale device development, molecular level devices must be fabricated. Proper theoretical studies could be an aid towards the experimental realities. Electronic transport studies are the basis to realise and interpret the problems happening at this minute scale. Keeping these in mind, we present a periodic energy decomposition analysis (pEDA) of two potential candidates for moletronics: phthalocyanines and porphyrins, by placing them over gold substrate cleaved at the (111) plane to study the adsorption and interaction at the interface and then, to study their application as a channel between two electrodes, thereby, providing a link between pEDA and electronic transport studies. pEDA provides information regarding the bond strength and the contribution of electrostatic energy, Pauli’s energy, orbital energy and the orbital interactions. Combining this analysis with electronic transport studies can provide novel directions for atomic/close-toatomic- scale manufacturing (ACSM). Literature survey shows that this is the first work which establishes a link between pEDA and electronic transport studies and a detailed pEDA study on the above stated molecules. The results show that among the molecules studied, porphyrins are more adsorbable over gold substrate and conducting across a molecular junction than phthalocyanines, even though both molecules show a similarity in adsorption and conduction when a terminal thiol linker is attached. A further observation establishes the importance of attractive terms, which includes interaction, orbital and electrostatic energies, in correlating the pEDA study with the transport properties. By progressing this research, further developments could be possible in atomic-scale manufacturing in the future.
phthalocyanine porphyrin potential energy decomposition analysis potential energy surface scan moletronics ACSM Manufacturing III 
International Journal of Extreme Manufacturing
2020, 2(1): 015401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!