作者单位
摘要
陆军工程大学石家庄校区 电磁环境效应重点实验室,石家庄 050003
针对大范围空间模拟强场电磁环境进行辐射效应试验难度大以及现有大电流注入(BCI)技术应用于非线性系统试验存在空白的问题,开展了屏蔽线耦合通道BCI等效替代辐照试验方法研究。以受试设备响应相等作为等效依据,建立了辐照法和注入法两种条件下受试设备响应的分析模型,推导出了注入激励源电压与辐照场强之间的等效对应关系,提出了BCI等效替代辐照的条件和试验方法,并进行了试验验证。研究结果表明,BCI方法是可以精确等效受试设备的辐照效应试验,试验误差不超过2 dB,能够满足工程的实际需求。
屏蔽线 大电流注入 非线性系统 辐射敏感度 等效替代 shielded wire bulk current injection (BCI) nonlinear system radiation sensitivity equivalent replacement 
强激光与粒子束
2021, 33(7): 073008
Author Affiliations
Abstract
1 School of Biomedical Engineering Science & Health Systems, 3141 Chestnut Street Philadelphia, PA 19104, USA
2 College of Nursing and Health Professions, Drexel University Philadelphia, PA, USA
3 Center for Emerging Neurotechnology and Imaging & Department of Psychiatry Penn State College of Medicine, Hershey, PA, USA
In the late 1980s and early 1990s, Dr. Britton Chance and his colleagues, using picosecond-long laser pulses, spearheaded the development of time-resolved spectroscopy techniques in an effort to obtain quantitative information about the optical characteristics of the tissue. These efforts by Chance and colleagues expedited the translation of near-infrared spectroscopy (NIRS)-based techniques into a neuroimaging modality for various cognitive studies. Beginning in the early 2000s, Dr. Britton Chance guided and steered the collaboration with the Optical Brain Imaging team at Drexel University toward the development and application of a field deployable continuous wave functional near-infrared spectroscopy (fNIR) system as a means to monitor cognitive functions, particularly during attention and working memory tasks as well as for complex tasks such as war games and air traffic control scenarios performed by healthy volunteers under operational conditions. Further, these collaborative efforts led to various clinical applications, including traumatic brain injury, depth of anesthesia monitoring, pediatric pain assessment, and brain-computer interface in neurology. In this paper, we introduce how these collaborative studies have made fNIR an excellent candidate for specified clinical and research applications, including repeated cortical neuroimaging, bedside or home monitoring, the elicitation of a positive effect, and protocols requiring ecological validity. This paper represents a token of our gratitude to Dr. Britton Chance for his influence and leadership. Through this manuscript we show our appreciation by contributing to his commemoration and through our work we will strive to advance the field of optical brain imaging and promote his legacy.
Functional near-infrared spectroscopy fNIR TBI anesthesia BCI pediatric pain 
Journal of Innovative Optical Health Sciences
2011, 4(3): 239

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!