作者单位
摘要
华南理工大学电力学院, 广东 广州 510640
可调谐半导体激光吸收光谱(TDLAS)由于具有高灵敏度、 高分辨率、 非侵入及实时检测等特点, 被广泛应用于燃烧诊断、 痕量气体监测、 工业过程控制等领域中。 波长调制光谱(WMS)的二次谐波(2f)检测是最常用的TDLAS气体传感方法之一。 激光器作为TDLAS-WMS在线检测系统中最核心的部件之一, 在长期运行过程中会由于其工作温度等因素变化, 引起输出激光波长漂移和2f背景信号基线变化, 从而导致气体浓度反演的精确度和TDLAS-WMS在线检测系统的稳定性降低。 针对上述问题, 根据NO气体分子在中红外波段5.176~5.189 μm的基频吸收特性, 选择峰值发射波长位于5.184 μm的分布反馈式连续波量子级联激光器(DFB-CW QCL), 分析了输出激光中心波长对应的峰值采样点位置随采样时间变化的漂移规律和2f吸收及其背景信号的漂移特性。 基于上述分析, 提出了以2f信号平均峰峰值替代2f信号峰值建立气体浓度反演模型以修正2f背景信号基线漂移, 并结合以信噪比最优为2f背景信号波长漂移修正原则的2f背景信号漂移综合修正方法, 以消除TDLAS-WMS在线检测系统长期连续检测过程中2f背景信号漂移对气体浓度反演结果的不利影响。 研究结果表明, 2f信号平均峰峰值随配置的NO样气浓度的增加而增大, 这两者呈现较好的线性关系, 其拟合曲线的线性拟合度R2达到了0.999 9。 在使用体积浓度为20×10-6 NO气体样品开展的连续60 min监测实验中, 波长漂移修正后, 反演浓度的标准偏差由波长漂移修正前的0.19×10-6下降到了0.07×10-6, 反演浓度的最大相对误差由波长漂移修正前的6.30%下降到了3.85%, 相对误差均方值由波长漂移修正前的24.39%下降到了9.99%。 结果显示, 该2f背景信号漂移综合修正方法可以有效地抑制2f背景信号漂移对气体浓度反演结果的影响, 显著提高了TDLAS-WMS在线检测系统连续监测的灵敏度、 精确度和稳定性。
激光吸收光谱 背景信号漂移 中红外谐波检测 NO浓度 Laser absorption spectroscopy Background signal drift Mid-infrared Harmonic Detection NO concentration 
光谱学与光谱分析
2021, 41(2): 408
作者单位
摘要
1 中国科学院电工研究所, 北京 100190
2 中国科学院大学, 北京 100049
采用可调谐半导体激光吸收光谱(TDLAS)技术对痕量气体的连续检测, 二次谐波背景信号会随着半导体激光器管壳温度变化产生漂移, 使得二次谐波波形无法保持稳定, 对测量结果产生误差。 基于TDLAS原理, 解释了二次谐波背景信号的产生, 分析了背景信号的来源和背景漂移对测量结果的影响, 通过对背景信号的扣除获得标准的二次谐波波形, 设计并搭建了一套高精度恒温控制系统, 此系统搭载了风冷以及水冷模块进行辅助控温, 控制精度达到±0.1 ℃, 选取了1 796和1 653 nm波长的DFB半导体激光器, 通过控制两只激光器在20~44 ℃温度条件下来回变动, 温度间隔为2 ℃, 对获得的二次谐波背景信号进行了实验研究。 研究表明: 随着半导体激光器管壳温度上升, 背景信号发生红移, 反之发生蓝移; 实验中温度每变化2 ℃, 1 796和1 653 nm的DFB激光器的背景信号分别产生了约3.2和2.67 pm波长漂移; 通过对半导体激光器进行控温封装, 实现对半导体激光器管壳的恒温控制, 可以有效地消除室温变化引起的背景信号漂移, 维持测量系统的稳定性, 提高痕量气体检测的精度和准确度。
气体检测 背景信号漂移 温度特性 Gas detection TDLAS TDLAS Background signal drift Temperature characteristic 
光谱学与光谱分析
2018, 38(6): 1670

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!