Author Affiliations
Abstract
1 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent, Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China
2 Department of Biomedical Engineering, Peking University, Beijing 100081, P. R. China
The study of circulating cells in the blood stream is critical, as it covers many fields of biomedicine, including immunology, cell biology, oncology, and reproductive medicine. In-vivo flow cytometry (IVFC) is a new tool to monitor and count cells in real time for long durations in their native biological environment. This review describes two main categories of IVFC, i.e., labeled and label-free IVFC. It focuses on label-free IVFC and introduces its technological development and related biological applications. Because cell recognition is the basis of flow cytometry counting, this review also describes various methods for the classification of unlabeled cells, including the latest machine learning-based technologies.
In-vivo flow cytometry label-free cell classification 
Journal of Innovative Optical Health Sciences
2023, 16(3): 2330005
Author Affiliations
Abstract
1 Beijing Key Laboratory for Optoelectronic Measurement Technology, Key Laboratoryfor Optoelectronic Measurement Technology and Instruments of Ministry of Education Beijing Information Science & Technology University Beijing 100192, P. R. China
2 Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
The fluorescence-based in vivo flow cytometry (IVFC) is an emerging tool to monitor circulating cells in vivo. As a noninvasive and real-time diagnostic technology, the fluorescence-based IVFC allows long-term monitoring of circulating cells without changing their native biological environment. It has been applied for various biological applications (e.g., monitoring circulating tumor cells). In this work, we will review our recent works on fluorescence-based IVFC. The operation principle and typical biological applications will be introduced. In addition, the recent advances in IVFC flow cytometry based on photoacoustic effects and other label-free detection methods such as imaging-based methods, diffuse-light methods, hybrid multimodality methods and multispectral methods are also summarized.
In vivo flow cytometry circulating tumor cells (CTCs) CTC clusters nanoparticles fluorescence 
Journal of Innovative Optical Health Sciences
2019, 12(6):
Author Affiliations
Abstract
1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, P. R. China
2 School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
In biomedical research fields, the in vivo flow cytometry (IVFC) is a widely used technology which is able to monitor target cells dynamically in living animals. Although the setup of IVFC system has been well established, baseline drift is still a challenge in the process of quantifying circulating cells. Previous methods, i.e., the dynamic peak picking method, counted cells by setting a static threshold without considering the baseline drift, leading to an inaccurate cell quantification. Here, we developed a method of cell counting for IVFC data with baseline drift by interpolation fitting, automatic segmentation and wavelet-based denoising. We demonstrated its performance for IVFC signals with three types of representative baseline drift. Compared with non-baseline-correction methods, this method showed a higher sensitivity and specificity, as well as a better result in the Pearson's correlation coe±cient and the mean-squared error (MSE).
In vivo flow cytometry cell counting baseline drift signal processing 
Journal of Innovative Optical Health Sciences
2017, 10(3): 1750008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!