Author Affiliations
Abstract
Bayesian optimization gamma rays laser–solid interactions machine learning radiation reaction 
High Power Laser Science and Engineering
2024, 12(1): 01000e12
Author Affiliations
Abstract
1 SUPA Department of Physics, University of Strathclyde, Glasgow, UK
2 The Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.
Bayesian optimization gamma rays laser–solid interactions machine learning radiation reaction 
High Power Laser Science and Engineering
2023, 11(3): 03000e34
Author Affiliations
Abstract
1 Department of Physics SUPA, University of Strathclyde, G4 0NG, UK
2 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
3 York Plasma Institute, University of York, YO10 5DD, UK
4 STFC-Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
The spatial-intensity profile of light reflected during the interaction of an intense laser pulse with a microstructured target is investigated experimentally and the potential to apply this as a diagnostic of the interaction physics is explored numerically. Diffraction and speckle patterns are measured in the specularly reflected light in the cases of targets with regular groove and needle-like structures, respectively, highlighting the potential to use this as a diagnostic of the evolving plasma surface. It is shown, via ray-tracing and numerical modelling, that for a laser focal spot diameter smaller than the periodicity of the target structure, the reflected light patterns can potentially be used to diagnose the degree of plasma expansion, and by extension the local plasma temperature, at the focus of the intense laser light. The reflected patterns could also be used to diagnose the size of the laser focal spot during a high-intensity interaction when using a regular structure with known spacing.
high power laser laser–solid interactions plasma temperature diagnosis 
High Power Laser Science and Engineering
2019, 7(1): 010000e2
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, 201800 Shanghai, China
2 College of Science, Xi'an Jiaotong University, Xi'an 710049, China
3 Helmholtz Institute Jena, D-07743 Jena, Germany
4 Theoretisch-Physikalisches Institut, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
5 Key Laboratory of HEDP of the Ministry of Education, CAPT, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newly developed particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamics models, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, both bremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered for studying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions from bremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatterings become dominant over bremsstrahlung is also outlined.
Particle-in-cell simulations Bremsstrahlung Nonlinear Compton scattering Laser-solid interactions 
Matter and Radiation at Extremes
2018, 3(6): 293

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!