陈楠 1,2王玥 1,3王博雨 1,4夏洋 1,2,3刘涛 1,3
作者单位
摘要
1 中国科学院微电子研究所, 北京 100029
2 中国科学院大学, 北京 100049
3 北京市微电子制备仪器设备工程技术研究中心, 北京 100029
4 北京交通大学理学院, 北京 100044
傅里叶红外光谱(FTIR)是材料表征的一种重要手段, 然而受限于光的衍射极限, 传统傅里叶红外光谱仪的极限空间分辨率在微米量级, 无法应用于纳米材料的表征。 纳米傅里叶红外光谱(Nano-FTIR)是一种新兴的超分辨光谱表面分析技术, 其以纳米级空间分辨率、 宽光谱范围和高化学灵敏性的特点在纳米材料表征研究中展现了巨大的潜力。 定性及定量的研究Nano-FTIR信号高空间分辨的来源和系统中光谱信号的提取过程, 可以为Nano-FTIR仪器的设计研发和样品光谱表征结果的解释提供重要依据。 该研究从典型的仪器结构和基本的工作原理出发, 在多物理场有限元分析软件COMSOL中建立了等效研究模型, 并对模型的重要细节和数值计算过程分别进行了说明。 在仿真研究中, 首先基于麦克斯韦电磁波理论计算了模型空间的电磁场增强情况, 再模拟了探针在介电常数差异巨大的两种材料交界处的“线扫”过程, 探讨了针尖近场增强信号的空间分辨率。 随后, 以探针与样品的散射功率为数值模型的研究对象, 仿真了探针“轻拍”对信号的调制和解调提取的过程, 并讨论了不同入射倾角和解调频率对光谱信号提取的影响。 最后, 为了验证模型的合理性, 仿真了20, 100和300 nm三种厚度SiO2薄膜样品在900~1 250 cm-1波数范围的光谱响应, 并将仿真得到的光谱与实测结果进行了对比。 结果表明随着样品厚度的增厚, 光谱信号得到相应的增强, 模型预测的谱图与实测谱图波形与波峰位置较为一致, 且与以往一些文献中采用针尖-样品间电场强度表示针尖处散射信号强弱的方法相比, 获得的谱图在峰形上更为接近。 提出的数值模型可用于Nano-FTIR光谱的预测, 此外, 模型也具有一定的通用性, 可以为其他基于散射型近场光学显微(s-SNOM)技术的太赫兹光谱技术和针尖增强拉曼光谱研究提供一定的借鉴。
纳米傅里叶红外光谱 散射式扫描探针显微镜 有限元仿真 数值模型 Nano-FTIR s-SNOM COMSOL COMSOL Finite element simulation Numerical model 
光谱学与光谱分析
2021, 41(4): 1125
作者单位
摘要
1 中国科学院重庆绿色智能技术研究院 重庆市跨尺度制造技术重点实验室,重庆 400714
2 吉林大学 仪器科学与电气工程学院,吉林 长春 130061
基于扫描探针显微镜的近场超空间分辨指纹光谱技术在分子识别及组分鉴别方面具有极大的应用前景.扫描探针显微技术与不同的光谱联合使用,发展出了不同的具有纳米级分辨的指纹光谱技术,其中包括针尖增强拉曼散射光谱技术、纳米级分辨率的傅里叶变换红外光谱技术及散射式的扫描近场太赫兹光谱技术.这三种散射式的扫描近场光学显微技术在实现方式上有所不同,在近场指纹识别方面可以相互补充.该综述主要对三种近场超空间分辨指纹光谱技术的特点进行了深入地分析和比较,并且对这三种技术的研究现状及应用进行了总结.
分子指纹识别 针尖增强拉曼散射 纳米级分辨率的傅里叶变换红外光谱 散射式的扫描近场太赫兹光谱 生物医学 molecule fingerprint identification TERS Nano-FTIR S-SNTS biomedicine 
红外与毫米波学报
2016, 35(1): 87

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!